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Abstract—We present equivalent circuits that model the in-
teraction of microwave resonators and quantum systems. The
circuit models are derived from a general interaction Hamilto-
nian. Quantitative agreement between the simulated resonator
transmission frequency, qubit Lamb shift and experimental data
will be shown. We demonstrate that simple circuit models, using
only linear passive elements, can be very useful in understanding
systems where a small quantum system is coupled to a classical
microwave apparatus.

Index Terms—cavity quantum electrodynamics, circuit model-
ing, coupled quantum-classical systems, quantum non demolition
measurement

I. INTRODUCTION

CAVITY quantum electrodynamics has long been an active
field to study the interaction of electromagnetic radiation

with matter, which is a fundamentally important topic in
physics [1], [2], [3]. Recently, cavity quantum electrodynamic
experiments were performed in the microwave regime [4],
[5], [6], [7], where the cavity consisted of a high-quality
factor (Q) microwave coplanar resonator. The quantum sys-
tem was a charge qubit built from two Josephson junctions.
Similar experiments were proposed to bring other nanosystems
(molecules [8], nanomagnets [9], [10], flux qubits [10], [11],
[12]) into interaction with coplanar waveguides. One of the
most promising aspects of these experiments is that they can
provide circuits which integrate quantum mechanical behavior
and ’conventional’ (high-frequency) components on a chip.

It is well established how to construct circuit models from
electromagnetic models for commonly used active or passive
components, which obey ’classical’ circuit theory. It has been
also demonstrated how one can build equivalent circuit models
of basic two-state quantum systems [13]. The goal of the
present paper is to show a systematic approach for building
circuit models for an interacting resonator-quantum system,
using linear approximations. This can be useful for developing
quantum systems coupled via a resonator [14] or modeling the
large external circuitry coupled to the quantum system. The
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possibility of this modeling approach was mentioned in [5]; to
our knowledge, though, our paper is the first to analyze and
exploit this model in detail. We investigate an experimental
setup, similar to the one in [15], composed of a high-Q,
superconducting microwave resonator, electrically coupled to
a quantum circuit (often referred as transmon-qubit [16]).

During the past years the field of circuit quantum electro-
dynamics went through a considerable growth. Many quan-
tum phenomena known from optical and three dimensional
microwave systems were also observed in circuit quantum
electrodynamics and simulated, including systems of entan-
gled quantum circuits [17] and resonators coupled via flux
qubits [18]. Such quantum electrodynamic systems need fur-
ther optimization of both the quantum bit and the resonator,
such as increasing qubit decay times and optimizing resonator
losses [19].

The natural application area of circuit models is the un-
derstanding of the interaction between a relatively complex
’classical’ circuitry and a relatively simple quantum circuit.
These models do not show new physics, but rather facilitate
the engineering of coupled microwave-quantum systems.

II. DEVICE GEOMETRY

The setup of a typical circuit quantum electrodynamic
experiment is shown in Fig. 1. A main component is a
superconducting coplanar waveguide resonator, displayed in
Fig. 1 (a) (longitudinal section) and (b) (cross section). A su-
perconducting resonator can easily reach an unloaded quality
factor in the range of Qunloaded ≈ 106 [4], [20]. The loaded
quality factor of the resonators is designed by using finger-
type capacitors in the central strip. These typically determine
the lifetime of the resonator field (which should be high)
and also the duration of the measurement of the nanosystem
(which should be low in order to avoid energy relaxation and
decoherence of the quantum system). The superconducting
resonator is practically lossless and close to resonance, its port
to port behavior can be modeled by the circuit elements in Fig.
1 (c), where the LC parameters are:

Cr = (Z0ωr)
−1,

Lr = Z0ω
−1
r .

(1)

Here, Z0 is the resonator impedance and ωr is the resonator
frequency. The 50Ω external environment is represented by
the load resistors Rload in Fig. 1 (c) which, together with the
finger-type capacitors C1 ≈ C2 in the circuit model and the
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Fig. 1. Geometry-sketch of the (a) longitudinal section of the resonator,
showing the quantum system-loop that is placed near the field maximum and
(b) the cross section of the investigated coplanar waveguide resonator. The
simplified equivalent circuit is shown in (c), representing the ideal resonator.
Here, the capacitors C1 and C2 correspond to the finger capacitors at the two
ends of the resonator, and the load resistors are also included. The coupling
to the quantum system is capacitive.

resonator frequency ωr, give the loaded quality factor of the
resonator: Qloaded ≈ 1/(RloadC1ωr).

The quantum circuit is placed in the gap of the resonator
(see Fig. 1 (a)) near the electric field maximum (magnetic field
maximum) if it is an electrically (magnetically) interacting
quantum system (i.e., charge qubit). Its presence slightly
changes the values of the capacitance and inductance of the
resonator and, thus, its resonance frequency.

The total system can be divided into a resonator part, an
interaction part and a quantum system part. The coupling in
the case of electrically interacting systems is capacitive.

Throughout this paper we will formulate our models as-
suming electrically coupled systems. We will also, however,
mention the parameters for the magnetic case in the next
section. Instead of modeling different geometries, the resonator
will be considered as a lumped circuit. For more detailed
investigation of resonator geometries, the reader is referred
to [10], [12], [16].

III. METHOD

For the modeling of the interacting resonator-quantum sys-
tem, we use a simplified (lossless) version of the circuit model
in Fig. 1 (c), and the coupling to the environment is neglected.
The Hamiltonian is obtained by adding the energy stored in
the ideal (LC) resonator, the energy stored in the interaction
of the resonator with the quantum system, and the energy of
the quantum system:

Htot =

ideal res. energy︷ ︸︸ ︷
1

2

(
CrV̂

2
res + Lr Î

2
res

)
+

+

interaction energy︷ ︸︸ ︷
~g

2VRMS
σ1V̂res +

q. s. energy︷ ︸︸ ︷
~ωq

2
σ3 . (2)

In the above equation, the different parts are illustrated by the
boxes in Fig. 1 (c).

The resonator energy can be defined analogous to the
classical energy of the LC circuit in Fig. 1 (c), however, the
voltages and currents here are operators and their expectation
value gives the voltage and current of the LC resonant circuit.
The resonator root-mean square current (IRMS) and voltage
(VRMS) [4], [5] is related to the minimum (or vacuum) field
in the resonator. They are further discussed in Appendix A.

The interaction energy also contains the resonator voltage
term (V̂res). Here, g is related to the geometric capacitance
of the resonator-quantum system Cc

rq , and σ1 is related to the
voltage of the quantum system. The σi, in the QED framework,
are referred to as Pauli matrices and are the basic observables
of the two state quantum system. The interaction term is a
standard term used in quantum electrodynamics, and valid for
every electrically interacting quantum system and resonator.

The last term in (2), containing ωq represents the energy
level splitting (∆E = ~ωq) of the quantum system. This part
can only be derived in terms of quantum mechanics.

For simulating the dynamics of the coupled system, we use
the Liouville-von Neumann equation

Ȧ = − j

~
[A,Htot] (3)

with the Hamiltonian of (2). Here A is an operator that
represents either one of the Pauli matrices (σi) or the resonator
voltage (V̂res) or current (Îres) operator. Based on the von
Neumann equation, we find the following coupled differential
equation system:

λ̇1 = −ωqλ2 −
λ1

T2
(4)

λ̇2 = ωqλ1 − gλ3
Vres

VRMS
− λ2

T2
(5)

λ̇3 = gλ2
Vres

VRMS
− λ3 + 1

T1
(6)

V̇res

VRMS
= ωr

Ires
IRMS

− γ
Vres

VRMS
(7)

İres
IRMS

= −ωr
Vres

VRMS
− gλ1. (8)

The above equations are a direct result of the von Neumann
equation for the dissipationless case (if T1, T2 → ∞ and
γ → 0). We can observe that the first three equations (4), (5)
and (6) are the widely used Bloch equations [21] written for a
two-level quantum system; the last two are equations for the
dynamics of normalized resonator voltage and currents, thus
we will call Eqs. (4)-(8) resonator-Bloch equations (RBEs).
Dissipation is phenomenologically described by the decay and
decoherence constants T1 and T2 [21], and the resonator loss,
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1/γ is added similar as in [22]. The λi variables are the
expectation values of the Pauli matrices and represent the
coherence vector characterizing the state of the quantum bit.
The derivation of the resonator-Bloch equations is shown in
Appendix A.

The only approximation used here is to neglect the cor-
relations between the qubit and field [22], thus writing the
expectation value of the normalized voltage and coherence
vectors as a product of the individual expectation values:⟨

σiV̂res

⟩
= ⟨σi⟩

⟨
V̂res

⟩
= Vresλi. (9)

An equation system similar to the resonator-Bloch equations
was introduced by Jaynes and Cummings [22], [23], written
for the coupling of electric fields and dipole moments. We now
use this model to find passive circuits describing the interaction
of the LC resonator-quantum system.

A. Modeling the system for large detuning

In circuit quantum electrodynamic experiments, measure-
ments are often performed in the so-called dispersive regime,
where the qubit-resonator detuning is much larger then the
coupling frequency: ∆ ≫ g. In this case, off-resonant interac-
tion between the quantum system and the resonator does not
switch the quantum system and λ3 remains constant. Thus,
we can neglect the oscillations of the inversion term in the
resonator-Bloch equations (λ̇3 = 0) and perform a linear
approximation by keeping λ3 = λ0

3. This is valid only if the
measurement time is much smaller than the decay time T1.
For a large decay time T1 or short measurement time window,
the system behaves linearly, and the resonator-Bloch equations
reduce to four coupled linear differential equations (we will
call them linear resonator-Bloch equations): Eqs. (4), (5), (7)
and (8) with λ3 = λ0

3. These can be modeled by the passive
circuits shown in Fig. 2. These circuits represent the interac-
tion of (a) electric and (b) magnetic quantum systems, with
the resonator in the dispersive regime. Interaction between the
quantum system and resonator occurs through their coupling
capacitance in Fig. 2 (a) or mutual inductance in Fig. 2 (b),
depending on the type of interaction (electric or magnetic).

In the circuit models, the decoherence time from resonator-
Bloch equations (4) and (5) is represented by the parallel
resistor with R1

qCq ≈ T2; the series resistor, with Lq/R
2
q ≈ T2

and the resonator decay rate γ, is given by RrCr in case
of electric and Lr/Rr in case of magnetic interactions. The
parameters of the circuits were found as a direct result of the
linear resonator-Bloch equations and are summarized in Table
I; for the derivation see Appendix B. This table summarizes
the central result of our work.

The physical parameters of the resonator are changed from
the values in (1) to the values in Table I due to the presence
of the quantum system. The circuit models presented in this
section provide two resonance peaks in every case, which
represent the oscillations of the coupled system. The coupling
between the quantum system and the resonator changes the
electromagnetic response of the resonator in a way that de-
pends on the state (λ3) of the quantum system. The quantum
state can be read out non-destructively from the measurement
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Fig. 2. Circuit models representing the linear quantum mechanical interaction
of the resonator and the qubit (i.e., λ3 ≈ λ0

3) in case of (a) electric
interaction (e.g., charge qubit) and (b) magnetic interactions (e.g., flux qubit).
The coupling between the resonator and quantum system in capacitive in (a)
and inductive in (b). The quantum system behaves as a linear LC oscillator
that changes the frequency of the resonator. The outcoupling capacitors,
corresponding to the resonator finger-type gaps, have very small values and
thus can be added to the resonant circuits that model the linear interaction.

on the resonator. In physics this is often referred to as quantum
non-demolition measurement.

B. Modeling the system in its ground state

Next, we will investigate the ground state of the coupled
resonator-quantum system. We will also compare our sim-
ulation results mainly to measurements done in the ground
state. In case of no applied field on the input port, the
coupled resonator-quantum system will converge to the com-
mon ground state [λ1, λ2, λ3, Vres/VRMS , Ires/IRMS ] =
[0, 0,−1, 0, 0], due to the decay times T1, T2 and 1/γ in the
resonator-Bloch equations. In the case of a small applied probe
field on the resonator port, the system will oscillate around
its ground state and the inversion remains unchanged (i.e.,
λ3 ≈ −1).

Rather than implementing the drive-fields in our resonator-
Bloch equations, we start our simulations by taking a non-
zero mode occupation of the resonator field. For this we take
the initial condition: [0.04; 0; -0.999; 0; 0]. This corresponds
to fields in the resonator-quantum system with an average
photon number of approximately 0.01. Thus, for low fields
in the resonator (approximately 0.01 photons [5], [15]), the
nonlinear term λ2Vres/VRMS in the resonator-Bloch equations
will oscillate near 0, as it is a product of two very small values.
The inversion λ3 will stay approximately constant and not
change from its ground state even when the system has no
detuning. As the inversion can be taken constant, the linear
approximation done in the previous subsection holds, and we
can take λ0

3 ≈ −1.
In the next section, we will compare our derived resonator-

Bloch equation model and circuit models to experimental data,
and show the validity of our approximations.
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Interaction R1
q R2

q Lq Cq Rr Lr Cr Crq/Lrq

Electric ωrT2(−λ0
3)Z0

(−λ0
3)Z0ωr

T2ω2
q

(−λ0
3)Z0ωr

ω2
q

1
Z0ωr(−λ0

3)
− Crq Z0

ωq

γ

ωqZ0

ω2
r

1
Z0ωq

− Crq
g

ωrωqZ0

Magnetic
ω2
qT2Z0

(−λ0
3)ωr

Z0

ωrT2(−λ0
3)

Z0

ωr(−λ0
3)

− Lrq
(−λ0

3)ωr

Z0ω2
q

Z0
γ
ωq

Z0
ωq

− Lrq
ωq

Z0ω2
r

gZ0
ωrωq

TABLE I
SUMMARY OF THE PARAMETERS CALCULATED FROM THE LINEAR RESONATOR-BLOCH EQUATIONS, IF THE INVERSION IS CONSTANT (λ3 ≈ λ0

3).
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Fig. 3. Transmission frequency of the resonator as a function of detuning.
Small circles represent experimental data from [15] and the dashed lines
represent our circuit model. The anticrossing behavior is clearly visible and
the separation is approximately given by the vacuum Rabi frequency at
∆ = 0. The excellent agreement confirms the usability of our circuit model
to calculate cavity transmission.

IV. RESULTS

We performed numerical and circuit simulations on a re-
cently measured resonator-transmon qubit device from [15].
We took as input parameters: resonator frequency ωr/(2π) =
6.44 GHz, impedance Z0 = 50 Ω, vacuum Rabi frequency
g/(2π) = 266 MHz and cavity decay rate γ/(2π) = 1.6 MHz.
The dephasing time was approximately T2 ≈ 1 µs, which is
known to be in good agreement with experimental findings
[16]. Further, the linewidth of the qubit coherence vector
elements λ1, λ2 is in good agreement with the experiment
(approximately 3 MHz) in [15]. Simulations were performed
in LTSPICE [24] based on the presented circuit models, using
frequency domain AC analysis.

The transmission of the circuit in Fig. 2 (a) was calculated
for the above parameters, setting λ0

3 = −1 as the system was
in ground state. We investigated the dependence of the result
with respect to quantum system frequency, while keeping the
resonator frequency fixed. This was done by varying ωq which
was directly related to the parameters of our circuit model.

The empty circles in Fig. 3 represent data from [15] that
has been transformed from flux to detuning coordinates so
that our simulated results can be compared to the measured
cavity transmission. We can see excellent agreement of the
transmission frequency of our circuit (dashed line) with exper-
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Fig. 4. Frequency (Lamb) shift of the quantum bit as a function of
qubit detuning. Small circles represent experimental data. Continuous lines
represent results extracted from the numerical solutions of the resonator-Bloch
equations. Dashed lines indicate results of our passive circuit model (Fig. 2
(a))

imental data (small circles), for positive and negative detuning,
showing the validity of the linear approximation and the excel-
lent description of the anticrossing of the resonator-quantum
system by the derived circuit model. At approximately ∆ = 0,
the peaks are separated by the vacuum Rabi frequency g/(2π).
The transmission graphs do not contain amplitude data, but
we mention here, that the reduction of the peak far from the
resonator frequency (ωr/(2π)=6.44 GHz) is also observed in
our simulation. In the case of large detuning, the peaks are
highly separated and the qubit peak gets highly reduced, while
the resonator frequency peak approaches the original resonator
frequency; this shows that for large detuning the two systems
are decoupled.

After successfully applying our circuit model to the de-
scription of the cavity transmission, we performed an analysis
on the quantum bit frequency shift (Lamb shift). The cavity
transmission was calculated as a function of the detuning;
the Lamb shift was extracted by subtracting the bare cavity
frequency and the detuning (∆) from the simulated qubit
frequency. This was done by solving the full resonator-Bloch
equations (4)-(8) numerically using a basic Runge-Kutta solver
and by employing our circuit models. The simulation results
were compared to experimental data from [15], for a detuning
ranging from 100 MHz to 600 MHz. The comparison was
done by changing the frequency of the qubit and keeping the
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Fig. 5. Theoretical demonstration of our circuit model showing the state
dependent resonator frequency shift, that opens the possibility of a quantum
state measurement. The quantum system decay time was 20µs, that was
large enough not to influence the linewidth of the excited state. The shift
is approximately g2/∆. The slight disagreement of the peak positions results
from the Fourier transform on the finite simulation window of the output
voltage signal calculated with the resonator-Bloch equations.

resonator frequency constant.
As shown in Fig. 4, we see an excellent agreement between

the experimental Lamb shift (small empty circles) and the
numerical solutions of the resonator-Bloch equations (solid
line) as well as our linear circuit model (dashed line). Thus,
we can affirm that also the frequency shift of the quantum
system (Lamb shift) is well described by our circuit model.
To this point we only did simulations of the quantum sys-
tem in its ground state. For the numerical solution of the
full resonator-Bloch equations, we used the initial conditions
[λ1, λ2, λ3, Vres/VRMS , Ires/IRMS ] = [0.04, 0,−0.999, 0, 0]
as discussed in Section III-B. For the circuit model, we set
λ0
3 = −1.
We will now investigate the case, when the quantum system

is away from its ground state, and its frequency is far detuned
from the resonator frequency. In this case one can perform
a non-demolition readout of the quantum state, i.e., read out
the inversion without changing it. This can be done because,
if the detuning tends to infinity (practically is large enough
so that the inversion changes only slightly), then it is known
from Rabi’s solutions that the inversion will not change (i.e.,
the resonator is unable to switch the quantum circuit during
measurement). For an optimal quantum state readout, however,
the state of the quantum system should not decay during
measurement. Based on our circuit model and resonator-Bloch
equations presented earlier, we now estimate the value of the
decay time T1 for an optimal readout.

The quantum state readout measurement is performed in
the dispersive regime, as discussed in Section III-A. In the
case of small decay times T1, if the quantum system is in
its excited state, it will quickly relax to the ground state; this
limits the measurement time and, thus, the Fourier window
of our numerical simulations. On the other hand, for large
decay times, the quantum-state dependent cavity shift can

be simulated, as shown in Fig. 5. The simulated cavity-
pull linewidths extracted from the Fourier transform of the
numerical resonator-Bloch equation solutions and from the
frequency domain simulation of our circuit model agree well.
This shows that the broadening of the peaks is mainly due to
decoherence T2 and cavity decay (1/γ) and not the qubit decay
T1, which was not included in the circuit model. In this limit,
the quantum-state dependent cavity pull is resolvable, and we
find that for this case T1 ≥ 20 µs (or more) would be required,
so that the two linewidths approximately agree. For smaller
decay times, the numerical simulations of the resonator-Bloch
equations show high asymmetry of the two peaks due to the
non-Lorentzian behavior of the spectral line corresponding to
the excited qubit state (λ0

3 = 1); this is due to the decay of
the state during simulation. In order to avoid the decay of the
quantum state the simulation window can be reduced. For a
too small simulation window, however, the Fourier transform
of the signal becomes inaccurate.

V. CONCLUSIONS

We have derived circuit models for the understanding and
modeling of superconducting coplanar waveguide resonators
interacting with quantum systems. They can easily be used to
model the cavity transmission, Lamb shift and quantum non-
demolition measurement. We find their application straightfor-
ward in understanding experimental data and estimating decay
times for an optimal quantum state readout. Our models can
be extended, e.g., by adding further circuits to represent addi-
tional qubits. Also, embedding quantum systems in large-scale
classical circuitry is straightforward in our circuit models.
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APPENDIX A
DERIVATION OF THE RESONATOR-BLOCH EQUATIONS

For the derivation of the resonator-Bloch equations, we need
to review a few concepts widely used and well established in
quantum optics. The starting point is to define the resonator
voltage, similar as in [4], [5]. The voltages and currents on
the LC circuit are defined as:

V −1
RMS V̂res = a+ a+, (10)

I−1
RMS Îres = −j(a− a+). (11)

Here the terms a+ and a represent the emission and absorption
operators. The commutator properties of these operators are

[a, a+] = 1, [a, a+a] = a, [a+, a+a] = −a+,

[a, a] = [a+, a+] = [a+a, a+a] = 0. (12)

The brackets represent a commutator relation (also used in the
von Neumann equation (3)).
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The normalization terms VRMS and IRMS represent the
root-mean square voltage and current [4], [5], on the resonator:

VRMS =
√
~ωr/(2Cr), (13)

IRMS =
√
~ωr/(2Lr). (14)

If we substitute the voltage and current operators ((10) and
(11)) into the general Hamiltonian shown in (2) and use the
commutator operations defined in (12), we can get the general
Hamiltonian

Htot =

ideal res. energy︷ ︸︸ ︷
~ωra

+a +

interaction energy︷ ︸︸ ︷
~g
2
σ1(a+ a+)+

q. s. energy︷ ︸︸ ︷
~ωq

2
σ3 ,

(15)

widely used in cavity quantum electrodynamics [5], [21], [25],
[26].

For each Pauli matrix σi, (i = 1, 2, 3) and for the nor-
malized current and voltage in (10) and (11), we used the
von Neumann equation (3) for finding the resonator-Bloch
equations.

We now show the derivation of the dynamic equation for the
resonator normalized current (8). The other resonator-Bloch
equations (for coherence vector and resonator normalized
voltage) can be derived analogously. First, the normalized
current can be written as

I−1
RMS∂tÎres = −j~−1

[
I−1
RMS Îres,Htot

]
=

−j~−1I−1
RMS

(
ÎresHtot −HtotÎres

)
. (16)

Using the properties of the creation/annihilation operators
from (12), the above von Neumann equation simplifies to

I−1
RMS∂tÎres = −ωr(a+ a+)− gσ1. (17)

Using the definition in (10) and taking the expectation values
of the time dependent variables in the above equation, we get
(8).

APPENDIX B
DERIVATION OF THE EQUIVALENT LINEAR CIRCUIT

If the inversion is constant (λ3 = λ0
3) and the system does

not decay (i.e., T1 → ∞), we can linearize the resonator-
Bloch equations and thus get an equivalent circuit. In this case
(6) is automatically fulfilled, and the other resonator-Bloch
equations (4), (5), (7) and (8) simplify to the linear differential
equation system:

λ̇1 = −ωqλ2 − T−1
2 λ1 (18)

λ̇2 = ωqλ1 − gλ0
3V

−1
RMSVres − T−1

2 λ2 (19)

V −1
RMS V̇res = I−1

RMSωrIres − γV −1
RMSVres (20)

I−1
RMS İres = −V −1

RMSωrVres − gλ1. (21)

By rewriting the above as two second order equations, we get:

λ̈2 = −ω2
qλ2 − T−1

2 ωqλ1 − gλ0
3V

−1
RMS V̇res

−T−1
2 λ̇2 (22)

I−1
RMS Ïres = V −1

RMSωrγVres − I−1
RMSω

2
rIres − gλ̇1. (23)

The above equations can be equivalently found by using:

λ̇1 = −ωqλ2 − ω−1
q V −1

RMSgλ
0
3V̇res − T−1

2 λ1 (24)

λ̇2 = ωqλ1 − T−1
2 λ2 (25)

V̇res = ωrZ0Ires + ω−1
r gVRMS λ̇1 − γVres (26)

İres = −Z−1
0 ωrVres. (27)

Introducing the quantum system voltage and current as:

Vq = VRMSλ1, (28)
Iq = (−λ0

3)
−1ω−1

r IRMSωqλ2, (29)

(24)-(27) change into equations for two capacitively coupled
resonant circuits, with parameters shown in Table I.
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