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Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared

and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between

quantized states in specifically designed multiple-quantum-well heterostructures. A systematic

improvement of quantum cascade lasers with respect to operating temperature, efficiency, and

spectral range requires detailed modeling of the underlying physical processes in these structures.

Moreover, the quantum cascade laser constitutes a versatile model device for the development and

improvement of simulation techniques in nano- and optoelectronics. This review provides a

comprehensive survey and discussion of the modeling techniques used for the simulation of

quantum cascade lasers. The main focus is on the modeling of carrier transport in the

nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic

level. Specifically, the transfer matrix and finite difference methods for solving the one-

dimensional Schr€odinger equation and Schr€odinger-Poisson system are discussed, providing the

quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is

covered with a focus on basic waveguide resonator structures. Furthermore, various carrier

transport simulation methods are discussed, ranging from basic empirical approaches to advanced

self-consistent techniques. The methods include empirical rate equation and related Maxwell-

Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as

well as quantum transport approaches, in particular the density matrix and non-equilibrium Green’s

function formalism. The derived scattering rates and self-energies are generally valid for n-type

devices based on one-dimensional quantum confinement, such as quantum well structures. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863665]
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GLOSSARY OF SYMBOLS

1̂¼Unity operator

1D¼One-dimensional

3D¼Three-dimensional

A¼Spectral function

a¼Power loss coefficient

am¼Mirror or outcoupling power loss coefficient

aw¼Waveguide power loss coefficient

CPU¼Central processing unit

C¼ Ideal midpoint of a rough interface of two adjacent

materials

c¼Vacuum speed of light

DTO¼Optical deformation potential field component jj u
DR¼Retarded environmental Green’s function

D<¼Lesser environmental Green’s function

dij¼Optical dipole matrix element for transition from

level i to j
E¼Electric field vector

En¼Electric field component (n ¼ x, y, z)

Ê¼Electric field amplitude vector

Ên¼Component of Ê (n ¼ x, y, z)

E¼Energy

E0 ¼Energy above conduction band edge, E0 ¼ E – Vc

Ei/Eik¼Eigenenergy of state jii=jiki
~Ei¼Energy of state i relative to conduction band edge

EF
i ¼Quasi Fermi level of subband i

Ep¼Bias drop over a single QCL period

EðxÞ¼Complete elliptical integral of the second kind

EMC¼Ensemble Monte Carlo

e¼Elementary charge

f¼Distribution function

fi¼Carrier distribution function in subband i

f FD
i ¼ Fermi-Dirac distribution function

f MB
i ¼Maxwell-Boltzmann distribution function

GR¼Retarded electron Green’s function

G<¼Lesser electron Green’s function

g¼ Power gain coefficient

gth¼Threshold power gain coefficient

H¼Magnetic field vector

Ĥ¼Magnetic field amplitude vector

Ĥ ¼Total Hamilton operator

Ĥ0¼ Free electron Hamilton operator

Hn¼Magnetic field component (n ¼ x, y, z)

Ĥn¼Component of Ĥ (n ¼ x, y, z)

�h¼Reduced Planck constant

I¼Optical intensity

J ¼ Imaginary part

I0¼Modified Bessel function

Im¼Optical intensity in mode m
J ¼Current density

Ĵ ¼Current density operator

k¼ In-plane wave vector, k ¼ ½kx; ky�T
k0 ¼ Final state in-plane wave vector, k0¼ ½k0x; k0y�

T

k0¼Vacuum wave number x=c
k21¼Wave number x21n0=c
kn¼Wave number (of w or Ĥy) in segment n
~kn¼ kn=m�n (for w); kn=�

ðnÞ
r (for Ĥy)

kB¼Boltzmann constant

L¼Resonator length

Lp¼Length of a QCL period

L¼Lorentzian lineshape function

Lij¼Lorentzian lineshape function for the transition

from subband i to j
LA¼Longitudinal acoustic

LO¼Longitudinal optical

B. Overview of the non-equilibrium Green’s

function method. . . . . . . . . . . . . . . . . . . . . . . 33

1. Fundamental equations and

observables . . . . . . . . . . . . . . . . . . . . . . . . 33

2. Different basis representations and low

rank approximations . . . . . . . . . . . . . . . . 35

C. Boundary conditions for cascade systems . 35

D. Scattering self-energies . . . . . . . . . . . . . . . . 36

1. Scattering from longitudinal acoustic

phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2. Scattering from polar longitudinal

optical phonons . . . . . . . . . . . . . . . . . . . . 39

3. Brooks-Herring scattering on charged

impurities . . . . . . . . . . . . . . . . . . . . . . . . . 39

4. Scattering from rough interfaces . . . . . . 41

5. Scattering from alloy disorder . . . . . . . . 43

6. Inelastic electron-electron scattering. . . 43

7. General remarks on scattering self-

energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

E. Selected results of NEGF on terahertz

QCLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1. QCL work principle—Energy resolved

spectral function . . . . . . . . . . . . . . . . . . . . 44

2. Effect of incoherent scattering . . . . . . . . 44

3. Coherent regime. . . . . . . . . . . . . . . . . . . . 45

4. Incoherent regime . . . . . . . . . . . . . . . . . . 45

5. Incommensurate transport

periodicity—Energy resolved current

density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6. Temperature degradation—Energy

resolved density . . . . . . . . . . . . . . . . . . . . 46

IX. CONCLUSION AND OUTLOOK. . . . . . . . . . . . . 47

A. Development of hybrid quantum-

semiclassical and approximate quantum

simulation approaches . . . . . . . . . . . . . . . . . . . 47

B. Modeling of innovative QCL designs based

on alternative material systems . . . . . . . . . . . 47

C. Inclusion of the optical cavity field . . . . . . . 48

011307-2 C. Jirauschek and T. Kubis Appl. Phys. Rev. 1, 011307 (2014)



mjj ¼ In-plane effective mass

m� ¼C valley effective mass

m� ¼Effective mass in the growth direction

Ne¼Number of electrons

Np¼Number of periods

NPh¼Mode independent phonon occupation number

NQ¼Phonon occupation number of a mode with wave

vector Q

NEGF¼Nonequilibrium Green’s function

n¼Electron density

n0¼Refractive index

nD¼Donor concentration

neff ¼Effective refractive index b=k0

ns¼Total sheet density per QCL period

ns
i ¼Electron sheet density of level i

nE
i ¼Density of states per unit area and energy in

subband i, nE
i ¼ m

jj
i =ðp�h2Þ

P¼Probability to find a single impurity

Pr¼Principal value integral

Q¼Phonon wave vector [q, qz]
T

q¼ In-plane component of Q, exchanged wave vector

qs¼ Inverse screening length

QCL¼Quantum cascade laser

R¼Facet reflectance

<¼Real part

RPA¼Random phase approximation

r¼ In-plane position vector (x, y)T

s¼Numerical grid spacing

S¼ In-plane cross section area

Sg¼Gain medium cross section area

T¼Facet transmittance

Te¼Electron temperature

Ti¼Electron temperature in subband i
TL¼Lattice temperature

TA¼Transverse acoustic

TO¼Transverse optical

t¼Time

u¼Displacement vector for lattice vibrations

V¼Potential
~V ¼Electrostatic potential energy

Vc¼Conduction band edge potential

Vb
ii0jj0
¼Bare Coulomb matrix elements

Vs
ii0jj0
¼Screened Coulomb matrix element

Vimp¼ Impurity scattering potential

VIR¼ Interface roughness potential

Vo¼Conduction band offset

v̂¼Velocity operator

vs¼Longitudinal sound velocity

Vjk0;ik¼Matrix elements for elastic scattering processes

V6
jk0;ik¼Matrix elements for emission/absorption processes

Wik;jk0 ¼Transition rate from an initial state jiki to a final

state jjk0i
W6

ik;jk0 ¼Emission/absorption rate from an initial state jiki
to a final state jjk0i

Wopt
ij ¼Stimulated transition rate from subband i to j
x¼Position vector [x, y, z]T

x̂¼Position operator

x¼ In-plane coordinate in light propagation direction

x¼Alloy mole fraction

y¼ In-plane coordinate

z¼Coordinate in growth direction

a¼Optical field amplitude absorption coefficient

a0 ¼Nonparabolicity parameter

b¼Complex propagation constant

b0 ¼Nonparabolicity parameter

C¼Overlap factor
~C¼ Scattering rate

cE¼Energy relaxation rate

ci;j¼Optical linewidth of transition from level i to j

dV̂ ¼ Photonic perturbation potential

D¼ Standard deviation of interface roughness

D21¼ Inversion, D21 ¼ q22 � q11

Deq
21¼Equilibrium inversion

Dn¼Length of nth segment; thickness of nth layer

Dz¼Uniform grid spacing

�¼ Permittivity, � ¼ �0�r

�0¼Vacuum permittivity

�r¼Dielectric constant

�r;0¼ Static dielectric constant

�r;1¼Dielectric constant at very high frequencies

/¼ Potential drop per period

U¼Electrostatic potential

g21¼ Slowly varying envelope function of q21

K¼ Interface roughness correlation length

l¼Chemical potential

l0¼Vacuum permeability

N¼Deformation potential

q¼ Space charge

qc¼Density of crystal

qij¼Density matrix element

qN ¼Number density of crystal

RR¼Retarded self-energy

R<¼Lesser self-energy

r¼Complex conductance

si¼Lifetime of level i
sji¼ Inverse transition rate from subband j to i
wi¼Wave function of subband i
Xij¼Rabi frequency for transition from level i to j
Xc¼Crystal volume

x¼Angular frequency

xD¼Debye frequency

xij¼Resonance frequency for transition from subband i
to j, (Ei � Ej)/�h

xLO¼LO phonon frequency at Q ¼ 0

xTO¼TO phonon frequency at Q ¼ 0

½Ĥ ; x̂�� ¼Commutator of Hamilton operator Ĥ and position

operator x̂, Ĥx̂ � x̂Ĥ

I. INTRODUCTION

The quantum cascade laser (QCL) is a fascinating de-

vice, combining aspects from different fields such as nanoe-

lectronics and quantum engineering, plasmonics, as well as

subwavelength and nonlinear photonics. Since its first exper-

imental realization in 1994,1 rapid progress has been

achieved with respect to its performance, in particular the

output power and the frequency range covered. The develop-

ment of innovative types of QCLs and subsequent design
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optimization has gone hand in hand with detailed modeling,

involving more and more sophisticated simulation tools. The

advancement of simulation methods is driven by an intrinsic

motivation to describe the underlying physical processes as

exactly and realistically as possible. In addition to scientific

motivations, improved agreement with experimental data

and enhanced predictive power is desired. Furthermore, the

extension and improvement of QCL simulation methods is

largely driven by experimental progress, such as innovative

designs.

The QCL is a special type of semiconductor laser where

the optical gain medium consists of a multiple quantum well

heterostructure, giving rise to the formation of quantized

electron states. These so-called subbands assume the role of

the laser levels in the QCL. To date, lasing has only been

obtained for n-type QCLs, i.e., designs using intersubband

transitions in the conduction band. Well established material

systems are InGaAs/InAlAs on InP substrate, and

GaAs/AlGaAs on GaAs.2,3 Furthermore, antimonide QCLs

have been demonstrated, e.g., near- and mid-infrared QCLs

using InAs/AlSb4,5 and aluminum-free InGaAs/GaAsSb

QCLs operating in the mid-infrared6 and terahertz7 regime.

Since all these materials (apart from AlSb) have direct

bandgaps, the development of simulation methods and tools

for QCLs has focused on the conduction band C valley

where the lasing transitions take place.

In contrast to conventional semiconductor lasers where

lasing occurs due to electron-hole recombination between

conduction and valence band, the emission wavelength of

QCLs is not determined by the bandgap of the material.

Rather, by adequately designing the nanostructured gain me-

dium, the device can be engineered to lase at a certain fre-

quency. In this way, the mid/far infrared and terahertz

regimes become also accessible, important for applications

such as chemical and biological sensing, imaging, and spe-

cial communication applications. In addition, the QCL offers

the typical advantages of semiconductor devices, such as

compactness, reliability, and potentially low production

costs.8 The basic working principle of the QCL is illustrated

in Fig. 1. Lasing is obtained due to stimulated emission

between the upper and the lower laser level, here resulting in

mid-infrared radiation at a wavelength of 5 lm. The depopu-

lation level is separated from the lower laser level by the lon-

gitudinal optical (LO) phonon energy for InGaAs of

�30 meV, enabling efficient depopulation of the lower laser

level. The injector level, located between two adjacent peri-

ods, ensures electron transport and injection into the upper

laser level of the next period. The optical field confinement

and beam shaping is provided by a specifically designed res-

onator, which is frequently based on plasmonic effects and

can exhibit subwavelength structuring for a further perform-

ance improvement.

The QCL operating principle was devised in 1971 by

Kazarinov and Suris.10 However, due to the experimental

challenges involved, it took more than two decades until

QCL operation was experimentally demonstrated at Bell

Labs by Capasso and his co-workers and Faist et al.1 Since

then, considerable progress has been achieved, e.g., with

respect to operating temperature,11 output power,12 and the

available frequency range.5,13 Meanwhile, QCLs cover a

spectral range from 2.6 lm to above 400 lm (obtained by

applying an external magnetic field).5,13 At room tempera-

ture, continuous wave output powers of several W can now

routinely be obtained in the mid-infrared region,12 and

widely tunable designs are available.14 Furthermore, at cryo-

genic temperatures wall-plug efficiencies of 50% and above

have been demonstrated,9,15 and up to 27% at room tempera-

ture.12 Commercial QCLs and QCL-based systems are al-

ready available from various companies.8

On the other hand, terahertz QCLs, first realized in

2002,16 still require cryogenic operating temperatures.

Lasing up to �200 K has been obtained,17 and by applying a

strong external magnetic field, an operating temperature of

225 K has been demonstrated.18 A long standing goal is to

achieve operation at room temperature or at least in the com-

mercially available thermoelectric cooler range (�240 K).

For a further enhancement of the operating temperature, it is

crucial to improve the gain medium design and reduce the

resonator loss.17,19 For systematic QCL optimization and ex-

ploration of innovative designs, detailed modeling is essen-

tial, requiring advanced simulation approaches which enable

realistic QCL simulations.

Besides its function as the optical gain medium, the QCL

quantum well heterostructure can also exhibit a strong nonlin-

ear optical response. Like the laser transition itself, such non-

linearities are based on quantized electron states, and thus can

be custom-tailored for specific applications and optimized to

exhibit extremely high nonlinear susceptibilities. This has led

to a new paradigm for QCL-based THz generation at room

temperature: Here, difference frequency mixing is used,

where the THz radiation corresponds to the difference in fre-

quency of two detuned mid-infrared beams, generated by

highly efficient mid-infrared QCLs.20 The optical nonlinear-

ity is either implemented into the QCL separately in a specifi-

cally designed heterostructure,21 or, more commonly, directly

integrated into the gain medium.20 With such an approach,

FIG. 1. Conduction band profile and probability densities for a mid-infrared

QCL9 lasing at 5 lm. Only the relevant energy states are displayed. The

upper and lower laser levels are indicated by bold solid lines. Furthermore,

the depopulation (dashed line) and injector (thin solid line) state probability

densities are shown. The rectangle denotes a single QCL period.
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THz generation at room temperature was obtained at power

levels of up to 120 lW.22,23 Furthermore, broadband fre-

quency tunability has been demonstrated, which is important

for various applications such as spectroscopy.23,24 Here, the

main goal is to push the available room temperature output

power to a few mW, as required for most technical applica-

tions. The modeling of such terahertz QCL sources is particu-

larly demanding, requiring the coupled simulation of two

mid-infrared QCLs and a careful modeling of the nonlinear

susceptibility and the associated frequency conversion pro-

cess in the heterostructure.25 Artificial optical nonlinearities

have also been used to extend QCL operation towards shorter

wavelengths, which cannot be reached directly since the

energy spacing of the quantized laser levels is limited by the

quantum well depth of the gain medium. Based on a fre-

quency doubling structure,26 a room temperature QCL source

operating at 2.7 lm could be demonstrated.27

The ongoing development and optimization of the QCL

heterostructure is accompanied by improvements of the opti-

cal cavity. For example, changes in the design and material

of the plasmonic resonator structure have played a crucial

role for increasing the operating temperature of THz

QCLs.17,19 Also, the performance of difference frequency

THz sources has largely benefited from special cavity

designs, such as the surface emitting Cherenkov waveguide

scheme to obtain increased output power and efficiency.23,28

Thus, a quantitative modeling and reliable numerical design

optimization and exploration must also include the optical

cavity. Moreover, various types of resonators with periodic

subwavelength structuring have been developed in the THz

and mid-infrared regime. This includes distributed feedback

structures to enforce single mode lasing and distributed

Bragg reflectors for enhanced facet reflectivity.29–31 A fur-

ther example are surface emission schemes based on one-

and two-dimensional photonic crystal structures,29,32,33

offering tailorable emission properties and improved beam

quality. The simulation of such subwavelength-structured

cavities requires advanced electromagnetic modeling, e.g.,

based on coupled mode theory34 or even full finite difference

time domain simulations of Maxwell’s equations.33,35

The goal of this review is to give a detailed survey and

discussion of the modeling techniques used for QCL simula-

tion, ranging from basic empirical approaches to advanced

self-consistent simulation methods. The focus is here on the

modeling of the heterostructure gain medium. Also the simu-

lation of the optical cavity will be covered for simple resona-

tor waveguide structures. As mentioned above, the modeling

of complex cavities such as photonic crystal structures con-

stitutes an advanced electromagnetic modeling task, which is

beyond the scope of this paper. The review is organized as

follows: In Sec. II, the numerical solution of the one-

dimensional Schr€odinger equation is discussed, providing

the eigenenergies and wave functions of the energy states in

the QCL heterostructure. Furthermore, the inclusion of space

charge effects by solving the Schr€odinger-Poisson equation

system is treated. Section III covers the modeling of the opti-

cal resonator, where we focus on a basic waveguide resona-

tor structure. In Sec. IV, an overview and classification of

the different carrier transport models is given which are

commonly used for the theoretical description of the QCL

gain medium. Section V contains a discussion of empirical

modeling approaches for the gain medium, relying on experi-

mental or empirical input parameters, namely, empirical rate

equation and related Maxwell-Bloch equation approaches,

which are discussed in Secs. V A and V B, respectively.

Advanced self-consistent methods, which only require well

known material parameters as input, are covered in Secs.

VI–VIII: Semiclassical approaches such as the self-

consistent rate equation model (Sec. VI E) and the ensemble

Monte Carlo method (Sec. VI F), as well as quantum trans-

port approaches such as the density matrix method (Sec. VII)

and the non-equilibrium Green’s function formalism (Sec.

VIII). In this context, also the transition rates (Secs.

VI A–VI D) and self-energies (Sec. VIII D) are derived for

the relevant scattering processes in QCLs. The paper is con-

cluded in Sec. IX with an outlook on future trends and

challenges.

II. SCHR €ODINGER-POISSON SOLVER

A careful design of the quantized states in the QCL het-

erostructure is crucial for the development and optimization

of experimental QCL devices. In particular, the lasing fre-

quency is determined by the energy difference between the

upper and lower laser level. Furthermore, a careful energy

alignment of the levels is necessary to obtain an efficient

injection into the upper and depopulation of the lower laser

level. For example, for the structure shown in Fig. 1, the

depopulation level is separated from the lower laser level by

the InGaAs LO phonon energy of �30 meV to obtain effi-

cient depopulation, while the injector level is aligned with

the upper laser level of the next period.9 Also careful engi-

neering of the wave functions is important, determining the

strength of both the optical and nonradiative transitions.

Moroever, various carrier transport simulation approaches,

such as ensemble Monte Carlo (EMC), require the quantized

energy levels as input. The eigenenergies and wave functions

are determined by solving the stationary Schr€odinger equa-

tion or, if space charge effects are taken into account, the

Schr€odinger-Poisson equation system.

A. Schr€odinger equation

The QCL heterostructure consists of alternately grown

thin layers of different semiconductor materials, resulting in

the formation of quantum wells and barriers in the conduc-

tion band. Thus, the potential V and effective masses vary in

the growth direction, here denoted by z, whereas x and y
refer to the in-plane directions. The QCL heterostructure is

usually treated in the framework of the Ben Daniel-Duke

model which only considers the conduction band,36 where

the lasing transitions and carrier transport take place. Within

this approximation, the stationary Schr€odinger equation is

given by
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0 ¼ � �h2

2

1

mk zð Þ
@2

x þ @2
y

� �
þ @z

1

m� zð Þ
@z

� �(

þV zð Þ � E

�
w3D x; y; zð Þ; (1)

where w3D and E denote the wave function and eigenenergy,

respectively. Furthermore, mk refers to the in-plane effective

mass and m* is the effective mass in the growth direction,

i.e., perpendicular to epitaxial layers. For bound states,

the wave function is commonly normalized, i.e.,Ð Ð Ð1
�1 jw3Dj

2
dxdydz ¼ 1. Since V and the effective masses

only depend on the z coordinate, we can make the ansatz

w3D x; y; zð Þ ¼ S�1=2wk zð Þexp ikxxþ ikyyð Þ: (2)

Here, S is the in-plane cross section area and k ¼ kx; ky½ �T
denotes the in-plane wave vector, where T indicates the

transpose. The factor S�1=2 is added in Eq. (2) to obtain the

normalization condition
Ð
jwkj

2
dz ¼ 1. Insertion of Eq. (2) in

Eq. (1) yields the Ben Daniel-Duke model

�h2

2

k2
x þ k2

y

mk zð Þ
� �h2

2
@z

1

m� zð Þ
@z þ V zð Þ � Ek

( )
wk zð Þ ¼ 0; (3)

where the wave function wk zð Þ and energy Ek depend on the

in-plane electron motion, i.e., on k. Decoupling can be

obtained by neglecting the z dependence of the in-plane

effective mass mk, yielding the one-dimensional (1D)

Schr€odinger equation in its usual form

� �h2

2
@z

1

m� zð Þ
@z þ V zð Þ � E

" #
w zð Þ ¼ 0: (4)

The eigenenergy E due to 1D electron confinement in z
direction is related to the total energy Ek by Ek¼EþEkin,

where

Ekin ¼ �h2ðk2
x þ k2

yÞ=ð2mkÞ ¼ �h2k2=ð2mkÞ (5)

is the kinetic electron energy due to the free in-plane motion

of the electrons. The effective mass values not only depend

on the material composition37 but also on the lattice tempera-

ture and doping level.38 The latter effects tend to play a sec-

ondary role in QCLs and are thus usually neglected. For

strained QCL structures, the effective masses are addition-

ally affected by the lattice mismatch between the different

semiconductor materials, resulting in modified values

mk 6¼ m�.39

B. Boundary conditions

Strictly speaking, the quantum states in the QCL hetero-

structure are not bound, since the electron energy E exceeds

the barrier potential for large values of z. Thus, the electrons

will tunnel out of the multiple quantum well system after a

limited time. This situation is illustrated in Fig. 2. If the elec-

tron remains in the quantum well system for a considerable

amount of time, the concept of quasi-bound or quasi-

stationary states can be used.40 Such a state can again be

described by Eq. (4), however the eigenenergy is now a com-

plex quantity, E ¼ E0 � i�hcq=2. The meaning of the imagi-

nary term �i�hcq=2 for quasi-stationary states can be

understood by considering that the time dependence of a

stationary wave function w is given by exp �iEt=�hð Þ.
Consequently, for a complex eigenenergy E the density prob-

ability jwj2 of the electron in the quantum well system

decays as exp �cqtð Þ, thus cq is the probability density decay

rate of the quasi-bound state, and sq ¼ c�1
q can be associated

with the lifetime of the particle in the quantum well.40

Some numerical approaches have been developed to

solve Eq. (4) for quasi-bound states.41,42 However, the rele-

vant states which are considered for the design of a QCL

structure, such as the upper and lower laser levels and injec-

tor states, are typically strongly bound to obtain optimum

performance. Since the electron lifetime in these states is

governed by scattering processes and resonant tunneling

rather than sq, they are usually treated as bound states. This

can be done by restricting the simulation to a finite simula-

tion window containing a limited number of periods, and

imposing artificial boundary conditions w ¼ 0 at the borders,

as illustrated in Fig. 3. The simulation window has to be cho-

sen sufficiently large so that the portion of the wave function

which lies inside the quantum wells, i.e., which significantly

deviates from 0, is not markedly affected. For the simulation,

we assume that the QCL heterostructure is periodic, where a

period is defined by a sequence of multiple barriers and

wells, as illustrated in Fig. 1. Thus, for a biased QCL struc-

ture, it is sufficient to compute the eigenenergies and corre-

sponding wave functions for a single energy period of width

Ep, corresponding to the bias drop over a QCL period (see

Fig. 3). The solutions of the other periods can then simply be

obtained by shifts in position by multiples of the period

length Lp, and corresponding shifts in energy. For example,

the solutions in the right-neighboring period are given by

wi0 zð Þ ¼ wi z� Lpð Þ; Ei0 ¼ Ei � Ep, where wi and Ei are the

wave function and eigenenergy of the ith solution of Eq. (4)

obtained in the central period.

For the laser design and simulation, usually only the rel-

evant laser subbands such as the upper and lower laser level

FIG. 2. Quasi-bound states in the conduction band of a QCL heterostructure.
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and injector states are considered. These typically corre-

spond to the strongly bound states of the QCL heterostruc-

ture. Furthermore, the artificial boundary conditions

illustrated in Fig. 3 give rise to spurious solutions of Eq. (4),

which are not localized in the quantum wells. A systematic

selection of the relevant subbands can be achieved by con-

sidering only the most strongly bound levels in each period.

In this context, the energy of state i relative to the conduction

band edge

~Ei ¼ Ei �
ð

Vjwij
2
dz (6)

is a useful quantity.43 An automated selection of the relevant

subbands can then be implemented by choosing the states

with the lowest energies ~Ei in each period, considering all

subbands which contribute significantly to the carrier

transport.

C. Nonparabolicity

In Fig. 4, the band structure of GaAs as a typical III–V

semiconductor material is displayed. Shown is the valence

band (dashed lines), consisting of heavy hole, light hole, and

split-off bands, and the conduction band (solid line). As

pointed out above, only the conduction band is considered in

the Ben Daniel-Duke model, introduced in Sec. II A. The

conduction band has three minima, referred to as the C, L,

and X (or D) valley according to their position in K space.

For direct bandgap semiconductors typically used in QCLs,

the C valley is the lowest minimum. Thus, the theoretical

treatment is usually restricted to that valley, although under

certain conditions transitions to the X or L valleys can also

affect QCL operation.45–48 Furthermore, Eqs. (1)–(5) assume

a parabolic dispersion relation between energy and wave

number (dotted line in Fig. 4). This approximation only

holds close to the C valley minimum, i.e., it breaks down for

high-lying energy levels. The deviation from the parabolic

dispersion, i.e., the nonparabolicity, scales roughly inversely

with the semiconductor bandgap.49 This effect thus plays a

role especially for mid-infrared QCLs with lasing transition

energies of up to a few 100 meV, which are frequently based

on low-bandgap semiconductors such as InGaAs or InGaSb.

A detailed treatment of nonparabolicity effects in QCLs has

been performed by using k�p theory.45–47,50 A related strat-

egy, which we will discuss in the following, is to consider

nonparabolicity in Eq. (4) by implementing an energy de-

pendent mass, derived from k�p theory. This method

involves additional approximations, but is less complex than

full k�p calculations and can easily be incorporated into the

transfer matrix approach, which is widely used to solve Eq.

(4). According to Ekenberg,51 we obtain the energy depend-

ent effective masses

m�ðE0Þ ¼ m�

2a0E0
½1� ð1� 4a0E0Þ1=2�; (7a)

mkðE0Þ ¼ m�½1þ ð2a0 þ b0ÞE0�: (7b)

Here, a0 and b0 are nonparabolicity parameters, which are

defined in the framework of a 14-band k�p calculation.51,52

Approximately, we have a0 ¼ Eg þ Dso=3
� ��1

,49 where Eg

and Dso are the bandgap energy and the energy difference

between the light-hole and split-of valence bands, respec-

tively. Furthermore, m* is the C valley effective mass. In the

QCL heterostructure, the electron kinetic energy in the con-

duction band is given by E0 zð Þ ¼ E� V zð Þ. Since the semi-

conductor material changes along the growth direction, also

m�; a0, and b0 are z dependent. This approach is valid for

moderate energies E0 � 1=a0. The fact that Eq. (7a) even

breaks down for a0E0 > 1=4 can cause numerical problems

for large values of z close to the right simulation boundary,

where w is already close to 0 but E0 can assume relatively

large values (see Fig. 3). This issue can be avoided by using

Eq. (7a) for E0 < 0, and its second order Taylor expansion

FIG. 3. Finite simulation window with artificial boundary conditions w ¼ 0.

The central QCL period of the simulated structure is indicated, as well as the

energy interval used for determining the bound states, corresponding to an

energy period. The states in the other periods are found by adequate shifts in

position and energy.

FIG. 4. Band structure of gallium arsenide (GaAs), obtained with NEMO5

in 20 band empirical tight binding.44 Shown are the valence bands (dashed

lines), the conduction band (solid line), and the parabolic dispersion relation

used for the C valley (dotted line).
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m� E0ð Þ ¼ m� 1þ a0E0ð Þ; (8)

for E0 > 0, which is the widely used lowest order implemen-

tation of nonparabolicity.49,51 For an energy dependent effec-

tive mass, the Hamiltonian in Eq. (4) is not Hermitian; thus,

the obtained wave functions are in general not orthogonal.53

Also other approaches are available for implementing non-

parabolicity effects, for example based on the Kane model.53

In self-consistent simulations, each scattering process is

evaluated based on the corresponding Hamiltonian, which

depends on the in-plane effective masses of the subbands

involved. Thus, if we want to include corrections due to non-

parabolicity also for the scattering processes,54,55 then Eq.

(7b) should be used to determine mk E0ð Þ, which is however z
dependent. This problem can be avoided by defining an aver-

age effective mass for the ith subband

m
k
i ¼

ð
m� zð Þ 1þ 2a0 zð Þ þ b0 zð Þ

	 

Ei � V zð Þ½ �

� �
jwi zð Þj2dz;

(9)

where the wave function is assumed to be normalized,Ð
jwij

2
dz ¼ 1, and Ei denotes the corresponding subband

eigenenergy. This lowest order implementation of nonpara-

bolicity thus yields different, albeit constant in-plane masses

for each subband.

D. Numerical solution

Numerical approaches for solving the one-dimensional

effective mass Schr€odinger equation [Eq. (4)] are required to

be robust. Also computational efficiency is crucial, espe-

cially for QCL design and optimization tasks where many

simulations have to be performed. Furthermore, a straightfor-

ward implementation is desirable. Widely used numerical

approaches include the transfer matrix method41,43,56,57 and

finite difference scheme.58,59 Both methods have their

strengths and shortcomings. In particular, effects such as

nonparabolicity can be included more easily into the transfer

matrix approach. A further advantage is the exact treatment

of the potential steps between barriers and wells in the QCL

heterostructure. On the other hand, this method can exhibit

numerical instabilities for multiple or extended barriers due

to an exponential blowup caused by roundoff errors.58 This

issue can however be overcome, for example by using a

somewhat modified approach, the scattering matrix

method.60 In Fig. 5, the transfer matrix and finite difference

schemes are illustrated.

1. Transfer matrix approach

The transfer matrix approach uses the fact that analytical

solutions of Eq. (4) are available for constant or linear poten-

tial sections and for potential steps.61 An arbitrary potential

can then be treated by approximating it in terms of piecewise

constant or linear segments, respectively. In the first case,

the solution is given by complex exponentials,41,56 while the

approximation by linear segments gives rise to Airy function

solutions.41 The Airy function approach provides an exact

solution for structures which consist of segments with con-

stant effective masses and piecewise linear potentials, such

as a biased QCL heterostructure if we neglect nonparabolic-

ity and space charge effects. On the other hand, Airy func-

tions are much more computationally expensive than

exponentials, and also prone to numerical overflow for seg-

ments with nearly flat potential.62 Thus, great care has to be

taken to avoid numerical problems and to evaluate the Airy

functions efficiently.63

In the following, we focus on the exponential transfer

matrix scheme, illustrated in Fig. 5(a). We start by dividing

the structure into segments which can vary in length, but

should be chosen so that all band edge discontinuities occur-

ring between wells and barriers are located at the border of a

segment, i.e., do not lie within a segment. The potential and

effective mass in each segment n with zn � z < zn þ Dn

¼ znþ1 are approximated by constant values, e.g., Vn

¼ V znð Þ; m�n ¼ m� znð Þ, resulting in a jump Vn ! Vnþ1;
m�n ! m�nþ1 at the border between the segments n and

nþ 1.41 Nonparabolicity can straightforwardly be imple-

mented by using Eq. (7a) for m*; then m�n ¼ m�n Eð Þ depends

on the eigenenergy E. The solution of Eq. (4) in segment n is

given by

w zð Þ ¼ An exp ikn z� znð Þ
	 


þ Bn exp �ikn z� znð Þ
	 


: (10)

Here, kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�n E� Vnð Þ

p
=�h is the wave number (for

E < Vn, we obtain kn ¼ ijn ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�n Vn � Eð Þ

p
=�h).41 The

FIG. 5. Numerical solution of the one-dimensional effective mass Schr€odinger

equation: (a) Transfer matrix approach and (b) finite difference method.
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matching conditions for the wave function at a potential or

effective mass discontinuity read

w z0þð Þ ¼ w z0�ð Þ;
@zw z0þð Þ½ �=m� z0þð Þ ¼ @zw z0�ð Þ

	 

=m� z0�ð Þ;

(11)

where z0þ and z0– denote the positions directly to the right

and left of the discontinuity.61 Using Eqs. (10) and (11), the

amplitudes Anþ1 and Bnþ1 can be related to An and Bn by

Anþ1

Bnþ1

� �
¼ Tn;nþ1

An

Bn

� �
; (12)

where the transfer matrix is with ~kn ¼ kn=m�n given by

Tn;nþ1 ¼ Tn!nþ1Tn Dnð Þ

¼

~knþ1 þ ~kn

2~knþ1

eiknDn
~knþ1 � ~kn

2~knþ1

e�iknDn

~knþ1 � ~kn

2~knþ1

eiknDn
~knþ1 þ ~kn

2~knþ1

e�iknDn

0
BBBB@

1
CCCCA: (13)

Here,

Tn Dnð Þ ¼ eiknDn 0

0 e�iknDn

� �
(14)

corresponds to the transfer matrix for a flat potential obtained

from Eq. (10), and

Tn!nþ1 ¼
1

2~knþ1

~knþ1 þ ~kn
~knþ1 � ~kn

~knþ1 � ~kn
~knþ1 þ ~kn

� �
(15)

is the potential step matrix for the interface between the seg-

ments n and nþ 1 at z0¼ znþ1, derived from Eq. (11).61 For a

structure divided into N segments, the relation between the

amplitudes at the left and right boundaries of the structure,

A0, B0 and AN, BN, can be obtained by multiplying the matri-

ces for all segments

AN

BN

 !
¼ TN�1;NTN�2;N�1…T0;1

A0

B0

 !

¼
T11 T12

T21 T22

 !
A0

B0

 !
: (16)

This equation must be complemented by appropriate

boundary conditions. As described in Sec. II B, for the QCL

heterostructure we can restrict our simulation to a limited

number of periods (see Fig. 3) and assume w ¼ 0 at the

boundaries of our simulation window, corresponding to

A0þB0¼ 0 and AN þ BN¼ 0. The left boundary condition

can, for example, be enforced by setting A0¼ 1, B0¼�1.

The right boundary condition ANþBN¼ 0 can then only be

satisfied if the energy dependent matrix elements T11(E),

T12(E), T21(E), and T22(E) in Eq. (16) assume certain values.

The corresponding energies E are the eigenenergies of the

bound states.41 Numerically, these eigenenergies are found

by the so-called shooting method. Here, the wave function at

the right boundary is computed from Eq. (16) as a function

of energy, wNðEÞ ¼ ANðEÞ þ BNðEÞ, and the eigenenergies

are given by wNðEÞ ¼ 0. For the periodic QCL heterostruc-

ture, it is sufficient to restrict the simulation to a single

energy period (see Fig. 3). In practice, Eq. (16) can only

be solved for a limited number of discrete energy points

Em ¼ E0 þ mDE with sufficiently close spacing DE. The

eigenenergies are located in intervals Em::Emþ1 with

wNðEmÞwNðEmþ1Þ < 0, and can be determined more accu-

rately by choosing a finer energy grid in the corresponding

intervals, or preferably by applying a root-finding algorithm

such as the bisection method.64

The accuracy of the transfer matrix scheme can gener-

ally be improved by replacing Eq. (13) with a symmetric

transfer matrix

Tn;nþ1 ¼ Tnþ1

Dn

2

� �
Tn!nþ1Tn

Dn

2

� �

¼

~knþ1 þ ~kn

2~knþ1

eikþn Dn
~knþ1 � ~kn

2~knþ1

e�ik�n Dn

~knþ1 � ~kn

2~knþ1

eik�n Dn
~knþ1 þ ~kn

2~knþ1

e�ikþn Dn

0
BBBB@

1
CCCCA; (17)

where k6
n ¼ kn 6 knþ1ð Þ=2 and kn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�n E� Vnð Þ

p
=�h;

~kn ¼ kn=m�n.43 Here, the band edge discontinuities occurring

between wells and barriers must be treated separately by

using the corresponding transfer matrix Eq. (15).

2. Finite difference method

The finite difference method works by converting Eq.

(4) to a finite difference equation. As illustrated in Fig. 5(b),

a spatial grid with uniform spacing Dz is introduced, and the

wave function w zð Þ, potential V zð Þ, and effective mass m� zð Þ
are represented by the corresponding values wn, Vn, and

m�n on the grid points zn. First order derivatives are approxi-

mated by @zw zn þ Dz=2ð Þ 	 Dwnþ1=2 ¼ wnþ1 � wn

� �
=Dz.

Consequently, the term @z m�ð Þ�1
@zw in Eq. (4) at z¼ zn can

be expressed as ðDwnþ1=2=m�nþ1=2 � Dwn�1=2=m�n�1=2Þ=Dz.

Using linear interpolation m�nþ1=2 ¼ m�n þ m�nþ1

� �
=2, we

obtain the discretized form of Eq. (4)58,59

�snwn�1 þ dnwn � snþ1wnþ1 ¼ Ewn; (18)

with

sn ¼
�h2

D2
z m�n�1 þ m�nð Þ

; (19a)

dn ¼
�h2

D2
z

1

m�n�1 þ m�n
þ 1

m�n þ m�nþ1

� �
þ Vn: (19b)

Here, the grid should be chosen so that the band edge discon-

tinuities occur halfway between two adjacent grid points,58

as illustrated in Fig. 5(b). We again assume that the wave

function is zero at the boundaries of our simulation window,

w0 ¼ wN ¼ 0. Writing Eq. (18) in matrix form yields an

eigenvalue equation of the form H� EIð Þw ¼ 0, where w is
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the wave function vector with w ¼ w1;w2;…;wN�1½ �T, I rep-

resents the identity matrix of size N – 1, and H is the

Hamiltonian matrix with the non-zero elements Hn,n¼ dn,

Hn,n–1¼�sn, Hn,nþ1¼�snþ1. This equation can be solved

by using a standard eigenvector solver for a tridiagonal ma-

trix problem.64 However, if nonparabolicity is taken into

account, this is not directly possible since the effective

masses m�n depend on E, and a modified numerical scheme

must be employed.65 Alternatively, the shooting method dis-

cussed in Sec. II D 1 can be employed.

E. Schr€odinger-Poisson equation system

To lowest order, electron-electron interaction can be

considered by self-consistently solving Eq. (4) together with

the Poisson equation57,66

e�1@z � zð Þ@z
~V zð Þ

	 

¼ e nD zð Þ �

X
i

ns
i jwi zð Þj2

� �
: (20)

From a quantum mechanical point of view, this corresponds

to a mean-field treatment of the electron-electron interaction

referred to as Hartree approximation, representing the lowest

order of a perturbation expansion in the electron-electron

interaction potential. In Eq. (20), � zð Þ is the permittivity

which varies with semiconductor composition and thus is

also periodic, and e denotes the elementary charge. The right

hand side of Eq. (20) corresponds to the space charge q in

the QCL heterostructure due to the positively charged donors

with concentration nD zð Þ and the electrons, where ns
i is the

electron sheet density of level i with wave function wi zð Þ.
This charge distribution in the structure gives rise to space

charge effects, resulting in an additional electrostatic poten-

tial energy ~V zð Þ which causes conduction band bending.67

The total potential V in Eq. (4) is then given by

V ¼ V0 þ ~V . Here, V0 ¼ Vc � Epz=Lp, where Vc is the

unbiased conduction band profile due to the varying material

composition, thus describing the wells and barriers, and the

term –Ep z/Lp results from the applied bias. Since the energy

drop across a period is given by the external bias,

V z0ð Þ � V z0 þ Lpð Þ ¼ Ep, we have ~V z0ð Þ ¼ ~V z0 þ Lpð Þ. Due

to the charge neutrality in each period,
Ð z0þLp

z0
qdz ¼ 0, we

furthermore obtain @z
~V z0ð Þ ¼ @z

~V z0 þ Lpð Þ, i.e., ~V has the

periodicity of Vc. Thus, we can restrict the solution of Eq.

(20) to a single QCL period z� z0; z0 þ Lp½ � and assume the

boundary conditions ~V z0ð Þ ¼ ~V z0 þ Lpð Þ ¼ 0.

Equation (20) can, for example, be solved by applying

the finite difference method. In analogy to Eqs. (18) and

(19), we obtain

~sn
~Vn�1 � ~dn

~Vn þ ~snþ1
~Vnþ1 ¼ qn; (21)

with

qn ¼ e nD;n �
X

i

ns
i jwi;nj

2
� �

(22)

and

~sn ¼
1

2eD2
z

�n�1 þ �nð Þ;

~dn ¼
1

2eD2
z

�n�1 þ 2�n þ �nþ1ð Þ:
(23)

Equation (21) is then solved over a single QCL period

z� z0; z0 þ Lp½ �, with the grid points zn, n ¼ 0…P which

should coincide with the grid used for solving the

Schr€odinger equation Eq. (4). Applying the boundary condi-

tions ~V 0 ¼ ~VP ¼ 0, Eq. (21) can be written as a matrix equa-

tion M ~V ¼ q, where ~V and q represent vectors with

elements ~Vn and qn, respectively, with n ¼ 1… P� 1ð Þ. M is

a matrix with the non-zero elements Mn;n ¼ �~dn; Mn;n�1

¼ ~sn;Mn;nþ1 ¼ ~snþ1. This equation can be efficiently solved

using an algorithm for tridiagonal equation systems.64

While ns
i in Eq. (22) can in principle only be determined

by detailed carrier transport simulations, simpler and much

faster approaches are often adopted, e.g., for design optimiza-

tions of experimental QCL structures over an extended param-

eter range. Frequently, Fermi-Dirac statistics is applied,57,66

with

ns
i ¼

m
k
i

p�h2
kBTLln 1þ exp l� ~Ei

� �
= kBTLð Þ

	 
� �
: (24)

Here, we assume that the electron distribution is described

by the lattice temperature TL. Furthermore, l is the chemical

potential, kB denotes the Boltzmann constant, and m
k
i is the

effective mass associated with the ith subband, see Eq. (9). If

nonparabolicity effects are neglected, m�i can often be

approximated by the value of the well material. In Eq. (24),

the energy ~Ei defined in Eq. (6) is used instead of the eigene-

nergy Ei, to correctly reflect the invariance properties of the

biased structure.43 Especially, this guarantees that the

obtained results do not depend on the choice of the elemen-

tary period in the heterostructure. The chemical potential l
is found from the charge neutrality condition within one

period, i.e.,

ns ¼
ðz0þLp

z0

nDdz ¼
X

i

ns
i : (25)

This is done recursively by first determining a lower and

an upper boundary value for l where
P

in
s
i < ns andP

in
s
i > ns, respectively, and then finding the exact l, e.g.,

by using the bisection method.64

The total potential in the Schr€odinger equation (4) is

given by V ¼ V0 þ ~V , where ~V has to be obtained by solving

the Poisson equation (20). On the other hand, the wave func-

tions wi in Eq. (20) must be determined from Eq. (4). In

practice, this is done by iteratively solving the Schr€odinger

and Poisson equations,57 initially assuming ~V ¼ 0, until the

results for ~V ; wi, and Ei converge. If the ns
i are obtained from

self-consistent carrier transport simulations instead of using

Eq. (24), then the carrier transport simulation and the numer-

ical solution of the Schr€odinger-Poisson system have to be

performed iteratively until convergence is obtained. Such

simulations are then referred to as self-self-consistent

approaches.67,68

011307-10 C. Jirauschek and T. Kubis Appl. Phys. Rev. 1, 011307 (2014)



In Fig. 6, simulation results for a terahertz QCL69

obtained by solving the Schr€odinger equation (solid lines)

and the Schr€odinger-Poisson system (dashed lines) are com-

pared. Although the populations obtained by Eq. (24) usually

deviate considerably from detailed carrier transport simula-

tions, this simplified approach can already give improved

results, as compared to completely neglecting space charge

effects.68 The reason is that the positively charged donors

are usually localized in a relatively small section, e.g., a sin-

gle quantum well, while the electrons are more or less dis-

tributed across the whole QCL period. This leads to

considerable conduction band bending due to space charge

effects, as illustrated in Fig. 6. While a more exact determi-

nation of ns
i yields a somewhat different electron distribution,

the overall result for ~V will be similar as for the simplified

model based on Eq. (24).

The method shown above is not the only one for solving

the Schr€odinger-Poisson system self-consistently under the

condition of global charge neutrality. A common alternative

approach is to keep the chemical potential fixed and solve

the Poisson equation with Neumann boundary conditions.

These boundary conditions allow the Poisson potential to

self-adjust the density and maintain the global charge neu-

trality. Typically, this requires a nonlinear realization of the

Poisson equation to include an explicit potential dependence

of the charge density. Such a nonlinear Poisson equation can

then effectively be solved with iterative methods such as the

predictor-corrector approach.70

III. OPTICAL RESONATOR MODELING

The resonator spatially confines the radiation field, fur-

thermore providing optical outcoupling, beam shaping and

frequency selection. While most theoretical work has

focused on the carrier transport in the gain medium, there

has also been progress in the modeling of the cavity. For

example, the resonator loss, which is crucial for the tempera-

ture performance of THz QCLs,17,19 has been extracted from

finite element simulations of the resonator.71 In Fig. 7, a typi-

cal waveguide resonator geometry of a QCL is sketched, and

the used coordinate system is shown for reference. The prop-

agation direction of the optical field is denoted by x, y refers

to the lateral direction, and z indicates the growth direction

of the heterostructure. The resonator consists of materials

with different permittivities to obtain waveguiding and opti-

cal outcoupling. Thus, for optical cavity simulations, the ma-

terial permittivities must be known, which in general depend

on the frequency, doping level, and temperature. In this con-

text, often the Drude model is employed with adequately

chosen fitting parameters.71 For intersubband optical transi-

tions, only the dipole matrix element in the z direction where

quantum confinement occurs is nonzero, see Sec. V B. Thus,

only resonator modes with an electric field component along

the z direction are amplified. For this reason, surface emis-

sion, i.e., outcoupling through the xy-plane, can only be

obtained by using special outcoupling schemes.33,72

A. Maxwell’s equations

The propagation of the electric and magnetic field vectors

E x; tð Þ and H x; tð Þ is generally described by Maxwell’s equa-

tions. Here, x ¼ x; y; z½ �T and t are the position vector and time,

respectively. In the following, monochromatic fields are con-

sidered. We use the physics convention, i.e., we assume a har-

monic time dependence / expð�ixtÞ, where x denotes the

angular frequency. The fields are then expressed as H x; tð Þ
¼ <fĤ xð Þexpð�ixtÞg, E x; tð Þ ¼ <fÊ xð Þexpð�ixtÞg, where

Ĥ and Ê denote the complex amplitude vectors. All equations

can easily be converted to the engineering convention [express-

ing the time dependence as / expðjxtÞ] by making the formal

substitution i!�j. For optical frequencies, typically the per-

meability is given by its vacuum value l0. Furthermore, it is

here assumed that the dielectric constant can be described by a

position dependent complex scalar �r xð Þ. Under these condi-

tions, Maxwell’s equations simplify to

r
 Ĥ ¼ �ix�0�rÊ; (26a)

r
 Ê ¼ ixl0Ĥ: (26b)

rB ¼ l0r Hð Þ ¼ 0 is then automatically fulfilled, as can be

seen by taking the divergence of Eq. (26b). The equation

rD ¼ r �0�rEð Þ ¼ q delivers the charge density q and is not

needed to compute E and H. Eqs. (26) and the corresponding

boundary conditions define an eigenvalue problem, which

yields the electromagnetic resonator modes. General numeri-

cal approaches for solving Maxwell’s equations include the

finite element73 and finite difference time domain35 method,

FIG. 6. Conduction band profile and probability densities for a bound-to-

continuum terahertz QCL.69 Shown are the results without considering space

charge effects (solid lines) and for space charge effects taken into account,

assuming thermally occupied subbands (dashed lines).

FIG. 7. Typical waveguide resonator geometry of a QCL.
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which also have been applied to the simulation of QCL

cavities.71,74

B. Two-dimensional waveguide model

By eliminating Ê from Eqs. (26), a wave equation for Ĥ

can be derived.75 In many cases, a waveguide geometry is

used which does not depend on the longitudinal x direction,

i.e., �r ¼ �r y; zð Þ. Optical outcoupling is then obtained

through the cleaved semiconductor facets which serve as

partly transparent mirrors. Since the resonator length of up to

a few mm is large as compared to the transverse resonator

dimensions, the computation of the transverse mode profile

in the yz-plane can be decoupled from the propagation coor-

dinate and reduces to a 2D problem. The facet transmittance

is then calculated based on the obtained transverse field dis-

tribution. For a constant waveguide geometry in propagation

direction x, we can assume a field dependence Hy;z x; tð Þ
¼ <fĤy;z y; zð Þexp ibx� ixtð Þg with the complex propaga-

tion constant b, and analogously for the electric field. The

wave equation then reduces to two coupled differential equa-

tions for the transverse field components

ð@2
p þ @2

qÞĤp þ
@q�r

�r

ð@pĤq � @qĤpÞ ¼ ðb2 � k2
0�rÞĤp; (27)

with k0 ¼ x
ffiffiffiffiffiffiffiffiffi
l0�0
p ¼ x=c; p ¼ y; z, and q¼ z,y.75 The

longitudinal component Hx is obtained from rH ¼ 0.

Furthermore, the electric field components can be calculated

from Eq. (26a). The solution of Eq. (27), along with the cor-

responding boundary condition of vanishing fields for

y2 þ z2 !1, constitutes an eigenvalue problem, and the

corresponding solutions Ĥy;z and b correspond to the wave-

guide modes. As mentioned above, only resonator modes

with an electric field component along the z direction are

amplified. This is fulfilled for the transverse magnetic (TM)

modes, which are characterized by a vanishing magnetic

field in the propagation direction, i.e., Hx¼ 0.

A waveguide mode is frequently characterized using

three parameters, the overlap (or field confinement) factor C,

the waveguide loss coefficient aw, and the mirror or outcou-

pling loss coefficient am, with the total power loss coefficient

a¼ aw þ am. Based on these quantities, the threshold gain is

given by gth ¼ a=C. Furthermore, for QCL simulations

including the optical cavity field, these parameters enter the

simulation of the QCL gain medium to describe the proper-

ties of the waveguide mode.76,77 C, aw, and am can be

obtained from the mode solutions of Eq. (27). The wave-

guide loss arises from the absorption in the waveguide layers

and is given by aw ¼ 2= bf g. The overlap factor corrects for

the fact that the mode only partially overlaps with the gain

medium. To reflect the fact that the gain medium only cou-

ples to the Ez component, the overlap factor is defined as78

C ¼

ð ð
Sg

jÊzj2dydzð ð1
�1
jÊj2dydz

; (28)

where we integrate over the gain medium cross section area

Sg in the enumerator.

Strictly speaking, the calculation of the facet transmis-

sion constitutes a full 3D problem, since the facets introduce

an abrupt change in x direction. However, since the QCL res-

onator length is large as compared to its transverse dimen-

sions, the computation of the transverse mode profile in the

yz-plane can be decoupled from the x coordinate, as men-

tioned above. Only for sufficiently wide transverse wave-

guide dimensions, the facet reflectance R can be estimated

from Fresnel’s formula

R ¼ jneff � 1j2=jneff þ 1j2; (29)

with the effective refractive index defined as neff ¼ b=k0. In

general, modal effects lead to an increased reflectance.71

Various methods have been developed to extract R from the

mode solutions provided by Eq. (27).79–82 The description of

the outcoupling loss by a distributed coefficient am is

obtained from R ¼ exp �amLð Þ with the resonator length L,

yielding

am ¼ �ln Rð Þ=L: (30)

If one facet is reflection coated and the light is outcoupled

only at one side, we obtain am ¼ �ln Rð Þ= 2Lð Þ.

C. One-dimensional waveguide slab model

If the waveguide width in lateral y direction significantly

exceeds its thickness, the waveguide calculations can be

reduced to a 1D problem with �r ¼ �r zð Þ, corresponding to

the simulation of a slab waveguide structure.83 This applies

for example to typical THz metal-metal waveguide resona-

tors, where the vertical z dimension of around 10 lm is often

significantly smaller than the lateral y dimension

ð	 25� 200 lmÞ.71 For TM modes, in addition to Hx¼ 0 we

have approximately Hz 	 0, and the y component is given by

Hy x; zð Þ ¼ <fĤy zð Þexp ibx� ixtð Þg, where b denotes the

complex propagation constant. The one-dimensional wave

equation is then obtained from Eqs. (26) or Eq. (27) as

�r@zð��1
r @zĤyÞ ¼ ðb2 � �rk

2
0ÞĤy: (31)

The electric field amplitude is with Eq. (26a) given by

Êz ¼ �
b

x�0�r

Ĥy; (32a)

Êx ¼ �
i

x�0�r

@zĤy: (32b)

From Eq. (31) we see that both Hy and 1=�rð Þ@zHy must be

continuous, corresponding to the continuity of the field com-

ponents Hy and, with Eq. (32b), Ex parallel to the layers.

Equation (31) can be brought into the same form as the

one-dimensional Schr€odinger equation (4) by associating

Ĥy zð Þ; �r zð Þ, and ��1
r b2 � k2

0 with w zð Þ; �2m� zð Þ=�h2, and

E� V zð Þ, respectively. Thus, we can use the transfer matrix

method introduced in Sec. II D 1 also for solving Eq. (31).
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We start by dividing the waveguide in z direction into layers

n, zn � z < zn þ Dn ¼ znþ1, with constant relative permittiv-

ities �
nð Þ

r . Although the gain medium itself consists of differ-

ent layers, it can be described by its total layer thickness and

a single effective dielectric constant since the individual

layers are so thin that the electromagnetic wave cannot

resolve the structure. For TM modes, the inverse effective

dielectric constant is given by ��1
r;eff ¼ ðDb�

�1
r;b þ Dw�

�1
r;wÞ=

Db þ Dwð Þ, where Db and Dw denote the total thickness of

the barriers and wells in the gain medium, respectively, and

�r;b; �r;w are the corresponding dielectric constants.84,85 In

analogy to Eq. (10) for solving the Schr€odinger equation, we

can write the solution of Eq. (31) in layer n as83

Ĥ
nð Þ

y ¼ An exp ikn z� znð Þ
	 
þ Bn exp �ikn z� znð Þ

	 

; (33)

with kn ¼ ð� nð Þ
r k2

0 � b2Þ1=2
. The propagation through the seg-

ment n is then described by the matrix Tn Dnð Þ defined in Eq.

(14). As mentioned above, Eq. (31) implies the continuity of

Hy and 1=�rð Þ@zHy across layer boundaries. These matching

conditions between two layers can be expressed in terms of

matrix Eq. (15) by choosing ~kn ¼ kn=�
nð Þ

r . There is, however,

one fundamental difference between Eqs. (4) and (31):

Equation (31) generally has complex eigenvalues b2 since �r

becomes complex for materials with optical loss or gain.

Consequently, the shooting method described in Sec. II D 1

is not applicable, and a complex root finding algorithm has

to be used.

The transmittance T¼ 1 – R through the facet can be

approximately computed from the mode profile Ĥy zð Þ. For

TM polarization, we obtain from the boundary value

method79

T ¼
ð1
�1

< bf g< �r zð Þ
� �

þ = bf g= �r zð Þ
� �

j�r zð Þj2
jĤy zð Þj2dz

" #�1


 8pjbj2k0

ðk0

�k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

z =k2
0

p
jU kzð Þj2jU0 kzð Þj2

jk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

z =k2
0

p
U kzð Þ þ bU0 kzð Þj2

dkz;

(34)

with the Fourier transforms

U kzð Þ ¼
1

2p

ð1
�1

Ĥy zð Þexp �ikzzð Þdz;

U0 kzð Þ ¼
1

2p

ð1
�1

Ĥy zð Þ
�r zð Þ

exp �ikzzð Þdz:

(35)

Several extensions of the one-dimensional mode calcu-

lations presented above are available. For high aspect ratios

of the waveguide cross section, the 2D mode calculation can

be approximately reduced to 1D problems in y and z direc-

tions, respectively, by using the effective refractive index

method.86 A generalization of the transfer matrix scheme for

solving the two-dimensional wave equation, Eq. (27), is the

film mode matching method, which is especially efficient for

waveguides with a rectangular geometry.87 Waveguides with

a periodic structure in propagation direction, such as a gra-

ting for surface emission, can be treated with coupled mode

theory.34

IV. OVERVIEW AND CLASSIFICATION OF CARRIER
TRANSPORT MODELS

Depending on the intended goals, carrier transport mod-

els with varying degrees of complexity have been used for

the QCL gain medium simulation, ranging from simple rate

equation approaches to fully quantum mechanical descrip-

tions. The central task is to determine the optical gain, which

is proportional to the population inversion between the upper

and the lower laser levels, and the current through the hetero-

structure as a function of the applied bias voltage. Most sim-

ulation approaches require the eigenenergies and wave

functions of the energy levels in the QCL heterostructure as

an input, which are determined by solving the Schr€odinger

equation or the Schr€odinger-Poisson equation system (see

Sec. II).

In Fig. 8, various theoretical descriptions of the gain me-

dium with different levels of complexity are illustrated. The

most basic model of laser gain media in general is the rate

equation approach,88 which is also frequently applied to

QCLs.77,89–94 The electron transport is simply described by

transition rates between the relevant energy levels in the gain

medium. In the case of the QCL, these are the electron sub-

bands, and the corresponding transitions are referred to as

FIG. 8. Illustration of various

carrier transport models with

different levels of complexity

and accuracy: (a) Rate equation

approach; (b) ensemble Monte

Carlo method; (c) 3D density

matrix/NEGF approach.
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intersubband transitions. The application of the rate equation

model to the QCL is illustrated in Fig. 8(a). In addition to the

transitions induced by the optical lasing field, nonradiative

transitions occur due to various scattering mechanisms, such

as the interaction of the electrons with phonons, other elec-

trons or defects in the semiconductor lattice. In the simplest

case, these scattering rates are experimental or empirical

input parameters.89,90 In more advanced implementations,

the transition rates are computed based on the corresponding

Hamiltonian,91,92 only relying on well known material pa-

rameters such as the effective mass. Thus, no specific experi-

mental input is required, and no free “fitting” parameters are

available. A direct numerical solution is here not possible

since the transition rates depend on the a priori unknown

electron populations. Rather, the steady state solution must

be found by simulating the temporal evolution of the system

until convergence is reached, or by using an iterative

scheme. Such advanced carrier transport methods are gener-

ally referred to as self-consistent approaches. Apart from

providing an intuitive description, rate equation models are

numerically very efficient, and thus are frequently employed

for the design and optimization of experimental QCL struc-

tures.94 An extension are the Maxwell-Bloch equations,

which include the carrier-light interaction based on the den-

sity matrix formalism.95 This approach is used to investigate

coherence effects between the laser field and the gain me-

dium, relevant in particular for the pulse formation in mode

locked QCLs.96–98

In a quantum well heterostructure such as the QCL gain

medium, the electrons are only confined in the growth direc-

tion. Thus, energy quantization occurs in one dimension,

while the electrons can still freely move in two dimensions.

Due to this free in-plane motion in the quantum well, the

electrons have kinetic energy in addition to the eigenenergy

of the corresponding quantized level, as illustrated in Fig.

8(b). For a more detailed modeling and an improved under-

standing of the carrier transport in QCLs, the in-plane

motion of the electrons must be taken into account. Such

three-dimensional (3D) simulation approaches also consider

intrasubband transitions occurring between different kinetic

energies within a subband, and yield the electron distribution

in each subband in addition to the level populations. On the

other hand, the complexity increases significantly as com-

pared to one-dimensional (1D) descriptions such as above

discussed rate equation approach, since transitions are now

characterized by the initial and final subbands as well as the

corresponding kinetic energies. An example for a self-

consistent 3D approach is the EMC method. Here, the intra-

subband processes are fully taken into account, and the scat-

tering rates are self-consistently evaluated based on the

corresponding Hamiltonian. Combining versatility and reli-

ability with relative computational efficiency, the EMC

approach has been widely used for the analysis, design, and

optimization of QCLs.46,47,99–110

In both the rate equation and EMC approach, the carrier

transport is described by scattering-induced transitions of dis-

crete electrons between the quantized energy levels, corre-

sponding to a hopping transport model. Such methods are

referred to as semiclassical, since the energy quantization in

the QCL heterostructure is considered, but quantum coher-

ence effects and quantum mechanical dephasing are not

included. Various quantum transport simulation approaches

have been developed which take into account quantum corre-

lations between the energy levels. One example is the density

matrix method. Its 1D version can be seen as a generalization

of the rate equation approach, and is frequently used for the

analysis and optimization of THz QCLs.17,111–113 In its 3D

form114,115 illustrated in Fig. 8(c), it corresponds to a general-

ization of semiclassical approaches based on the Boltzmann

transport equation such as EMC.114 Also the nonequilibrium

Green’s function (NEGF) method, considered the most

general quantum transport approach, has been applied to the

simulation of QCL structures.116–124 Quantum transport

approaches are numerically much more demanding than their

semiclassical counterparts. On the other hand, quantum co-

herence effects can play a pronounced role especially in THz

QCLs where the energetic spacing between the quantized lev-

els is relative small,115,125 while they are less relevant in mid-

infrared QCLs.114

In Table I, a classification of the different simulation

approaches covered in this review is given. Here, we differ-

entiate between semiclassical schemes based on hopping

transport between the quantized energy levels, and quantum

transport approaches taking into account quantum correla-

tions. We divide the methods into empirical approaches

relying on empirical or experimental input parameters, and

self-consistent schemes which evaluate the transition rates

based on the corresponding Hamiltonian. Furthermore, we

distinguish between 1D modeling techniques only consider-

ing the subband populations and intersubband transitions,

and 3D approaches also taking into account the electron dis-

tribution in the subbands and the intrasubband dynamics.

V. EMPIRICAL APPROACHES

The most basic approach for modeling the electron dy-

namics in a laser is to use experimental or empirical transi-

tion rates between the relevant energy levels in the laser gain

medium.88 For QCLs, these levels correspond to the quan-

tized eigenstates of the heterostructure, which have to be

found by solving the Schr€odinger equation, Eq. (4). The elec-

tron dynamics is then described by rate equations.88 Often,

only the nonradiative transitions are considered which occur

due to various scattering mechanisms, such as the interaction

TABLE I. Classification of carrier transport modeling techniques. The corre-

sponding section number is given in brackets.

Semiclassical Quantum transport

Empirical

1D Rate equations (V A) 1D density matrix (VII)

Maxwell-Blocha (V B)

Self-consistent

1D Rate equations (VI E) 1D density matrix (VII)

3D Monte Carlo (VI F) 3D density matrix (VII)

NEGF (VIII)

aOnly the carrier-light interaction is modeled using a density matrix formal-

ism, while scattering is treated based on rate equations.
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of the electrons with phonons, other electrons or defects in

the semiconductor lattice. Simulations not including the opti-

cal cavity field can be used to investigate under which condi-

tions sufficient optical gain is obtained, so that lasing

operation can start at all. In this way, parameters such as the

threshold current density and maximum operating tempera-

ture can be extracted. To investigate the lasing operation

itself, including optical output powers, saturation effects or

the intrinsic linewidth,90 the optical field has to be included

as well. Modified empirical scattering-rate approaches have

been developed for specific types of QCLs.126 Maxwell-

Bloch equations which are a generalization of the rate equa-

tion approach can be used to model the coherent interaction

between the laser field and the gain medium,95 e.g., to inves-

tigate the formation of optical instabilities in mode-locked

QCLs.96

A. Empirical rate equations

The rate equations for a laser are given by88

dtn
s
i ¼

X
j 6¼i

s�1
ji ns

j � s�1
i ns

i þ
X
j 6¼i

ð�Wopt
ij ns

i þWopt
ji ns

j Þ: (36)

The first two terms contain the relaxation transitions due to

scattering, e.g., the interaction of the electrons with phonons,

other electrons or defects in the semiconductor lattice. Also

spontaneous emission can be included here. The scattering

rate from a level j to i is often expressed in terms of an

inverse scattering lifetime s�1
ji , where s�1

i ¼
P

j 6¼is
�1
ij indi-

cates the total inverse lifetime of level i. The last sum con-

tains the lasing transitions, where Wopt
ij are the stimulated

optical transition rates for those transitions where an optical

field at or near the corresponding frequency jxijj
¼ jEi � Ejj=�h is present.88 The rates Wopt

ij are proportional to

the optical intensities in the corresponding lasing modes.

Typically, only one or a few transitions contribute to lasing.

Furthermore, ns
i is the electron sheet density of subband i,

i.e., the electron number divided by the in-plane cross sec-

tion area S. This quantity is often used in QCL heterostruc-

tures where energy quantization occurs in one dimension and

the electrons can still freely move in in-plane direction.

Commonly, the QCL heterostructure is designed strictly

periodically, as illustrated in Fig. 1. Apart from fabrication

tolerances, a periodic model is valid for the central QCL

periods far away from the contacts, if effects such as domain

formation127 and local variations of the optical field intensity

can be neglected. The sum in Eq. (36) can then be restricted

to one representative central period

dtn
s
i ¼

X
j 6¼i

ŝ�1
ji ns

j � s�1
i ns

i þ
X
j 6¼i

ð�Ŵ
opt

ij ns
i þ Ŵ

opt

ji ns
j Þ; (37)

with i; j ¼ 1::N, where N is the number of subbands in each

period. Here, ŝ�1
ji ¼

P
n2Zs�1

j;iþnN includes the transitions to

all equivalent levels in the different periods, and analogously

for Ŵ
opt

ji . The total sheet density in each period is determined

by the doping sheet density

ns ¼
XN

i¼1

ns
i : (38)

The steady state solution is obtained by setting dtn
s
i ¼ 0. If

we are not interested in the lasing operation itself, but only if

sufficient inversion for lasing is obtained, stimulated optical

effects can be excluded, Ŵ
opt

ij ¼ Ŵ
opt

ji ¼ 0. The subband pop-

ulations ns
i ði ¼ 1::NÞ can then be found by solving the linear

equation system Eq. (37) with dtn
s
i ¼ 0 and i ¼ 1::ðN � 1Þ,

complemented by Eq. (38) to obtain a linearly independent

system and thus a unique solution. To include lasing, this

system has to be complemented by equations describing the

optical intensities in the lasing modes, since the Ŵ
opt

ij is in-

tensity dependent.

Often the empirical rate equation is restricted to the

most important subbands and transitions to obtain compact

analytical results. A common model is the three-level sys-

tem,89 illustrated in Fig. 9. This description only includes the

upper laser level 2, lower laser level 1, and a reservoir level

0 representing the extraction and injector subbands. A frac-

tion g2 of the current density J is injected into the upper laser

level, and g1 into the lower laser level. Furthermore, only the

transition rates s�1
21 ; s�1

20 , and s�1
10 are included, with the

inverse upper and lower laser level lifetimes s�1
2 ¼ s�1

21

þ s�1
20 ; s�1

1 ¼ s�1
10 . With Eq. (36), the rate equations for the

upper and lower laser level are then obtained as

dtn
s
2 ¼ g2J=e� s�1

2 ns
2 � ropt

21 I ns
2 � ns

1

� �
;

dtn
s
1 ¼ g1J=e� s�1

1 ns
1 þ s�1

21 ns
2 þ ropt

21 I ns
2 � ns

1

� �
;

(39)

where ropt
21 is the cross section for stimulated emission from

level 2 to 1 and I is the optical intensity of the laser radiation

at frequency x21 ¼ E2 � E1ð Þ=�h. If lasing is neglected, I¼ 0,

the steady state population inversion is with dt¼ 0 in

Eq. (39) obtained as89

ns
2 � ns

1 ¼
J

e
g2s2 1� s1

s21

� �
� g1s1

� �
: (40)

The three-level model can be extended to take into account

further effects such as thermal backfilling of the lower laser

level and backscattering from level 1 to level 2 in terahertz

QCLs, which can be modeled by introducing additional life-

times s01 and s12, respectively.90

B. Maxwell-Bloch equations

Bloch equations are a generalization to the rate equation

approach where the interaction of the laser level electrons

FIG. 9. Three-level system model for a QCL.
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with the optical field is modeled using a density matrix for-

malism rather than scattering rates.95 In this way, optical

nonlinearities and coherence effects between the laser field

and the gain medium can be considered, while the carrier

transport due to nonradiative mechanisms is included by the

corresponding lifetimes as for the rate equations. To describe

the optical propagation, the Bloch equations are comple-

mented by Maxwell’s or related equations, such as the wave

equation. This model has, for example, been used to investi-

gate the formation of optical instabilities in QCLs,96,97

and to study the possibility of self-induced transparency

modelocking.98 The nonlinear optical dynamics in the gain

medium also plays an important role for the recently demon-

strated QCL-based frequency combs.128

The interaction of a classical optical field with a two-

level system is in the density matrix formalism described

by95

@tq21 ¼ �ix21q21 � i�h�1d�12EzD21 � c21q21;

@tD21 ¼ 2i�h�1 d�12q
�
21 � d12q21

� �
Ez � cE D21 � Deq

21

� �
;

(41)

where the asterisk denotes the complex conjugate. Ez x; tð Þ
represents the field component in the growth direction z of

the heterostructure since the other components do not inter-

act with the gain medium, and d12 ¼ �eh1jzj2i is the corre-

sponding dipole matrix element of the laser transition.

Furthermore, qij x; tð Þ ¼ q�ji x; tð Þ ¼ hijq̂ x; tð Þjji are the den-

sity matrix elements, and D21 x; tð Þ ¼ q22 x; tð Þ � q11 x; tð Þ is

the inversion. The density matrix can be normalized so that

qii ¼ ns
i=ns gives the relative population of subband i.

Dissipative processes are phenomenologically included by

adding decay terms with relaxation rates cE and c21, describ-

ing the energy relaxation and dephasing, respectively. Deq
21 is

the equilibrium inversion which the system approaches for

Ez¼ 0. If the gain medium is not homogeneous along

the propagation direction, as is the case for self-induced

transparency mode locking structures,98 the parameters d12,

cE; c21; x21, and Deq
21 depend on the propagation coordinate x.

Assuming weak nonlinearity and inhomogeneity, the op-

tical field propagation can be described by the wave equa-

tion.95 For propagation in x direction, it is given by

@2
x � c�2n2

0@
2
t

� �
Ez ¼ ��1

0 c�2@2
t Pz: (42)

Pz x; tð Þ is the polarization component in z direction due

to the lasing transition, given by Pz ¼ ðns=LpÞ d12q21ð
þ d�12q

�
21Þ. Here, Lp is the length of a single QCL period and

ns /Lp thus corresponds to the average electron concentra-

tion.97 Furthermore, n0 denotes the refractive index of the

gain medium material.

Ez and q21 are typically expressed by their slowly vary-

ing envelope functions

Ez x; tð Þ ¼
1

2
Êz x; tð Þexp i k21x� x21tð Þ½ � þ c:c:;

q21 x; tð Þ ¼ g21 x; tð Þexp i k21x� x21tð Þ½ �;
(43)

where k21 ¼ x21n0=c and c.c. denotes the complex conju-

gate. Inserting Eq. (43) into Eq. (41) and neglecting the

rapidly oscillating terms / exp 62ix21tð Þ, we obtain the den-

sity matrix equations in the rotating wave approximation95

@tg21 ¼ �i 2�hð Þ�1
d�12ÊzD21 � c21g21; (44a)

@tD21 ¼ i�h�1 g�21d�12Êz � g21d12Ê
�
z

� �
� cE D21 � Deq

21

� �
:

(44b)

Inserting Eq. (43) into Eq. (42) yields with the slowly

varying amplitude approximation j@2
x Êzj � jk21@xÊzj; j@2

t Êzj
� jx21@tÊzj95,97

@xÊz þ n0c�1@tÊz ¼ i
x21C
�0cn0

ns

Lp

d12g21 �
1

2
aÊz; (45)

furthermore assuming j@2
t g21j; jx21@tg21j � jx2

21g21j. Here,

the overlap factor C, Eq. (28), has been added to correct for

the fact that the optical mode only partially overlaps with the

gain medium, and a loss term with the power loss coefficient

a has been included. For applying the Maxwell-Bloch equa-

tion model to QCLs, typically the simplifying assumption is

made that the lower laser level is depopulated very effi-

ciently, s1 ! 0, resulting in ns
1 ¼ 0 in Eq. (39).97 The inver-

sion is then directly given by the upper laser level

population, D21 ¼ ns
2. By comparison of Eq. (44) with Eq.

(39), we obtain Deq
21 ¼ s2g2J= nseð Þ; cE ¼ s�1

2 .

The Maxwell-Bloch equations, Eqs. (44) and (45), are a

versatile approach to describe the optical dynamics in QCLs,

and additional effects can straightforwardly be implemented.

For example, the influence of spatial hole burning due to the

standing wave modes in a linear cavity has been extensively

studied,96,97,129 and dispersion as well as saturable absorp-

tion have been added to the model.130

1. Optical gain and transition rates

The Bloch equations Eq. (44) can be used to derive the

optical gain coefficient and transition rate associated with

stimulated emission and absorption.95 For a monochromatic

electromagnetic field, the stationary solution of Eq. (44a) is

obtained by setting @tg21 ¼ 0

g21 ¼ �
i

2�hc21

d�12ÊzD21: (46)

Multiplying Eq. (45) from left with Ê
�
z and adding the com-

plex conjugate, we obtain with Eq. (46)

@xI þ n0c�1@tI ¼ CgI � aI; (47)

with the power gain coefficient

g ¼ x21

�hc21�0cn0

ns

Lp

jd12j2 q22 � q11ð Þ: (48)

Here, we have replaced the electric field by the optical inten-

sity I ¼ �0cn0jÊzj2=2. The optical power inside the resonator

is given by P ¼ ISg=C, where Sg is the cross section area of

the gain medium and Sg=C corresponds to the effective area

of the waveguide mode. Frequently, I is assumed to change
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only slightly along the resonator, i.e., the intensity is aver-

aged over the x coordinate. This assumption is valid espe-

cially for the case of moderate output coupling at the facets

where the mirror loss can be described by a distributed coef-

ficient am, Eq. (30). Equation (47) then simplifies to

n0c�1@tI ¼ CgI � aI: (49)

The transition rate due to the optical field is with @tD21jopt

¼ 2@tq22jopt ¼ �2@tq11jopt obtained from Eqs. (44b) and

(46) as

@tq22jopt ¼
1

2
i�h�1ðg�21d�12Êz � g21d12Ê

�
z Þ

¼ � 1

�h2c21�0cn0

jd12j2 q22 � q11ð ÞI: (50)

The contribution / q22I leading to a reduction of q22 is due

to stimulated emission, while the contribution / q11I corre-

sponds to absorption. For a slightly detuned optical field at a

frequency x 6¼ x21, Eqs. (48) and (50) can be adapted by

replacing c�1
21 with pL xð Þ, where L xð Þ is the Lorentzian

lineshape function95

L xð Þ ¼ 1

p
c21

c2
21 þ x� jx21jð Þ2

: (51)

Thus, we obtain with the sheet densities ns
1 ¼ nsq11,

ns
2 ¼ nsq22,

g ¼ px
�h�0cn0Lp

jd12j2 ns
2 � ns

1

� �
L xð Þ; (52)

and

@tn
s
2jopt ¼ �

p

�0cn0�h2
jd12j2 ns

2 � ns
1

� �
IL xð Þ: (53)

Comparison with Eq. (36) yields for the stimulated optical

transition rates

Wopt
ij ¼ Wopt

ji ¼
p

�0cn0�h2
jd12j2IL xð Þ: (54)

VI. SELF-CONSISTENT SEMICLASSICAL
APPROACHES

Advanced self-consistent simulation approaches only

rely on well known material parameters such as the effective

mass, and no further specific experimental or empirical input

is required. This also means that no adjustable parameters

are available to fit the simulation results to experimental

data. These approaches are based on the evaluation of the

transitions between the various states due to different scatter-

ing mechanisms, including the interaction of the electrons

with phonons, impurities, and other electrons. The associated

scattering rates are computed based on the corresponding

Hamiltonian. A direct numerical solution of the resulting

equations is not possible since the transition rates depend on

the initially unknown electron populations. Rather, the

steady state solution must be self-consistently found by sim-

ulating the temporal evolution of the system until conver-

gence is reached, or by using iterative schemes. These

methods rely on the subband wave functions and eigenener-

gies found by solving the Schr€odinger or Schr€odinger-

Poisson equation, as described in Sec. II. The carrier trans-

port is then modeled by transitions of discrete electrons

between the quantized energy levels, also referred to as hop-

ping transport. Thus, these methods are called semiclassical,

since the energy quantization in the QCL heterostructure is

considered, but quantum coherence effects and dephasing

mechanisms are not included. Formally, semiclassical carrier

transport descriptions can be derived from the more general

density matrix formalism by neglecting the contribution of

the off-diagonal matrix elements, i.e., only considering the

diagonal elements corresponding to the occupations of the

states.114,131 In the following, the most relevant scattering

mechanisms in the QCL will be discussed. Furthermore, the

self-consistent rate equation approach and the EMC method

will be described, which are the two most widely used

advanced semiclassical QCL simulation schemes.

A. Scattering mechanisms and transition rates

A transition of a carrier from one state to another due to

a perturbation is referred to as a scattering process. The per-

turbation is described by a corresponding potential V, which

can be static or time dependent.61 This results in different

classes of scattering processes, illustrated in Fig. 10 for the

case of one-dimensional electron confinement as in QCL het-

erostructures. Elastic scattering, shown in Fig. 10(a), occurs

for time constant potentials. Here, the carrier energy is con-

served. Relevant mechanisms in QCLs include impurity,

interface roughness, and alloy scattering. For potentials with

harmonic time dependence, V / cos x0tð Þ, the carrier energy

is changed by 7�hx0, corresponding to the case of emission

FIG. 10. Different classes of

scattering processes: (a) elastic

scattering; (b) inelastic scatter-

ing; (c) carrier-carrier scattering.
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and absorption, respectively. This is referred to as inelastic

scattering [see Fig. 10(b)]. An important inelastic mecha-

nism is optical phonon scattering, and also the interaction

with photons can be viewed as an inelastic scattering pro-

cess. A special case is intercarrier process illustrated in Fig.

10(c) such as electron-electron scattering, where two elec-

trons are involved in the scattering event. Figure 11 shows

the influence of various scattering mechanisms on the spec-

tral gain obtained from an EMC simulation for two different

terahertz QCL designs.107

QCLs are n-type devices which are typically based on

direct bandgap semiconductors. Thus, in the following, we

restrict our treatment of scattering to the conduction band C val-

ley where also the lasing transitions occur. However, we note

that under certain conditions transitions to other valleys can

affect QCL operation.45–48 Scattering causes an electron transi-

tion from an initial state jiki to a final state jjk0i in the QCL het-

erostructure, where k ¼ kx; kyð ÞT and k0 ¼ k0x; k
0
y

� �T
are the

corresponding in-plane wave vectors. The states are described

by their wave functions Eq. (2) and eigenenergies Eq. (5).

For the initial state, we have w3D;i ¼ S�1=2wi zð Þexp ikrð Þ with

r ¼ x; yð ÞT and Eik ¼ Ei þ �h2k2=ð2m
k
i Þ where wi zð Þ and Ei are

obtained from Eq. (4) as described in Sec. II A, and analogously

for the final state.

For elastic scattering processes, V is constant. The corre-

sponding matrix element is defined as

Vjk0;ik ¼ hjk0jVjiki

¼ S�1

ð
S

ð1
�1

Vw�j wiexp i k� k0ð Þr½ �d2rdz: (55)

For inelastic processes, we assume a harmonic potential of

the form V ¼ V0 exp iQx� ix0tð Þ þ V�0 exp �iQxþ ix0tð Þ,
where Q is, for example, the phonon wave vector. The ma-

trix element can in analogy with Eq. (55) be obtained as

Vþ
jk0;ik

Qð Þ
V�jk0;ik Qð Þ

 !
¼ hjk0j

V0 exp iQxð Þ
V�0 exp �iQxð Þ

 !
jiki

¼ S�1

ð
S

ð1
�1

w�j wi

V0 exp iQxð Þ
V�0 exp �iQxð Þ

 !


 exp i k� k0ð Þr½ �d2rdz: (56)

Assuming bound wave functions wi;j zð Þ in Eqs. (55) and

(56), the integration over the z coordinate can be taken from

�1 to 1. This is also consistent with treating the gain me-

dium as an infinitely extended periodic heterostructure.

Furthermore, the in-plane cross section S is assumed to be

macroscopic, and thus the integration can for scattering rate

calculations be extended from �1 to 1 also in x and y
direction.

The transition rate from an initial state jiki to a final

state jjk0i is obtained from Fermi’s golden rule,61 given by

Wik;jk0 ¼
2p
�h
jVjk0;ikj2d Ejk0 � Eik

� �
(57)

for elastic scattering processes and

W6
ik;jk0 Qð Þ ¼ 2p

�h
jV7

jk0;ik Qð Þj2d Ejk0 � Eik 6 �hx0

� �
(58)

for inelastic processes. Here, Wþ
ik;jk0

corresponds to the emis-

sion rate, caused by the component exp ix0tð Þ, and W�ik;jk0
refers to absorption due to the component exp �ix0tð Þ. The

Dirac d function ensures energy conservation. For elastic

processes, we obtain from Ejk0 ¼ Eik

jk0j ¼ k0 ¼
m
k
j

m
k
i

k2 þ 2m
k
j

Ei � Ej

�h2

0
@

1
A

1=2

: (59)

Analogously, energy conservation yields for inelastic

scattering

k0 ¼
m
k
j

m
k
i

k2 þ 2m
k
j

Ei � Ej 7 �hx0

�h2

0
@

1
A

1=2

: (60)

The computation of the total transition rates from an ini-

tial state jiki to a final subband j involves the summation

over wave vectors. These sums can be converted to integrals,

introducing a factor of Ld= 2pð Þ per dimension where the de-

vice length Ld in the corresponding direction is assumed to

be large enough that quantization effects can be neglected.132

An example is the summation over the final in-plane wave

vector k0 which is two-dimensional. It can furthermore be

advantageous to express k0 in polar coordinates jk0j and /,

and introduce a kinetic energy variable Ekin
j ¼ �h2jk0j2=ð2m

k
j Þ.

Thus, we obtainX
k0

…! S

2pð Þ2
ð ð1
�1

…d2k0

¼
Sm
k
j

2p�hð Þ2
ð1

0

ð2p

0

… d/dEkin
j : (61)

FIG. 11. Simulation results for the spectral gain vs. frequency, as obtained

by evaluating electron-phonon (e-p), electron-impurity (e-i), and electron-

electron (e-e) scattering (solid curves) and neglecting e-e (dashed curves) or

e-i (dotted curves) scattering. (a) 3.4 THz resonant phonon depopulation

structure; (b) 3.5 THz bound-to-continuum structure. Reprinted with permis-

sion from J. Appl. Phys. 105, 123102 (2009). Copyright 2009 AIP

Publishing LLC.107
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Spin degeneracy is not considered here, since for single-

electron scattering processes the spin is conserved. For

electron-electron scattering, the spin degeneracy must, how-

ever, be taken into account, as more closely discussed in the

corresponding section. Analogously, summation over a three-

dimensional wave vector, such as the phonon wave vector Q,

can in a crystal lattice of volume Xc be approximated by

X
Q

…! Xc

2pð Þ3
ð ð ð1

�1
…d3Q: (62)

B. Phonon scattering

A phonon is a quasiparticle associated with the lattice

vibrations in a crystal, representing an excited quantum me-

chanical state in the quantization of the vibrational modes.

Classically speaking, for an atom located at position x, lat-

tice vibrations are described by a displacement vector

u ¼ U sin Qx� xQtð Þ, with the amplitude U, wave vector Q,

and angular frequency xQ. The normal modes are the solu-

tions of u for which the lattice uniformly oscillates at a

single frequency xQ, and a phonon corresponds to an ele-

mentary vibrational motion. The associated relation between

wave vector Q and frequency xQ, the so-called dispersion

relation, defines a phonon branch, as illustrated in Fig. 12.

Acoustic modes are sound waves where two consecutive

atoms move in the same direction, and we have xQ ¼ 0 for

Q 5 0. For optical modes, two consecutive atoms in the

same unit cell move in opposite direction, and xQ at Q 5 0

typically corresponds to infrared optical frequencies.

Furthermore, the wave propagation can be predominantly

longitudinal ðQ k UÞ or transverse ðQ?UÞ; the correspond-

ing branches are then referred to as longitudinal or transverse

branches. In three dimensions, there is a single longitudinal

acoustic (LA) and 2 transverse acoustic (TA) branches as

well as Nu – 1 longitudinal optical (LO) and 2 Nu � 1ð Þ trans-

verse optical (TO) branches, where Nu denotes the number

of atoms per unit cell. For example, GaAs has two atoms per

unit cell, i.e., Nu¼ 2.

The lattice vibrations lead to a perturbation of the car-

riers and thus carrier scattering. Depending on the mecha-

nisms, there are different types of phonon scattering. Non-

polar phonon scattering occurs in all crystals and is due to

acoustic and (for Nu � 2) TO phonons. Here, the lattice

vibrations lead to a time dependent change of the conduction

(and valence) band energy. Polar scattering only occurs in

polar semiconductors, e.g., III–V semiconductors such as

GaAs. It is due to LO phonons, where the out-of-phase

movement of the neighbouring atoms of different types

causes a local dipole moment, resulting in oscillating electric

fields. Covalent semiconductors such as group IV materials

do not exhibit polar scattering.

The dominant phonon scattering mechanism in QCLs is

due to LO phonons. Since the optical phonon deformation

potential approaches zero at the conduction band C point due

to spherical symmetry, TO phonon scattering is negligible

for the C valley; it can however play a significant role for

intervalley transitions and intravalley scattering in the X and

valence band C minimum.133–135 Also acoustic phonons tend

to play a secondary role in QCLs.136

1. Non-polar phonon scattering

Non-polar phonon scattering occurs in all crystals and is

due to acoustic and (for Nu � 2) TO phonons. The energy of

the vibrating atom is the sum of its potential and kinetic

energy, which is equal to twice its average kinetic energy.

Thus, the total energy of the vibrational mode becomes for

u ¼ U sin Qx� xQtð Þ

E ¼ Namhj@tuj2it ¼
1

2
NamU2x2

Q; (63)

where the number of atoms with mass m in a crystal lattice

of volume Xc and density qc is Na ¼ Xcqc=m. Thus, we

obtain the amplitude for a mode occupied by a single phonon

of energy E ¼ �hxQ

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�h

XcqcxQ

s
: (64)

a. Acoustic phonons. Since phonon confinement does

not play an important role for the cascade structures (see dis-

cussion in Sec. VI B 2), scattering from bulk phonons obey-

ing Bose distribution is considered. Lawaetz has shown in

Ref. 137 that the deformation potential method of Bardeen

and Shockley138 may be applied to the scattering of electrons

with acoustic phonons. This method is basically a Taylor

expansion of the scattering potential in the phonon momen-

tum Q. In the case of vanishing screening, Kittel and Fong

derive in Ref. 139 the change of the electronic energy in low-

est order of the lattice deformation. Since for acoustic pho-

nons, adjacent atoms move in the same direction, regions of

compression or dilatation extend over several lattice sites,

and the crystal can be described as an elastic continuum. The

resulting strain gives rise to a time dependent change of the

conduction band energy V ¼ dVc. The corresponding con-

stant of proportionality is the deformation potential N (for

valleys without rotational symmetry, N becomes a tensor),

i.e., V ¼ Nru for small displacements.61 We obtain

V ¼ NQU cos Qx� xQtð Þ; (65)

FIG. 12. Schematic illustration of the dispersion relation for an acoustic and

optical phonon branch. This simplified example corresponds to a one-

dimensional lattice with Nu¼ 2 and lattice constant a.
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i.e., only LA phonons contribute since QU¼ 0 for transverse

phonons. For acoustic phonons, we have xQ ¼ 0 for

Q ¼ jQj ¼ 0, and the dispersion relation can be described by

the linear approximation xQ ¼ vsQ for small Q, where vs is

the longitudinal sound velocity (see Fig. 12). With Eq. (64),

the perturbation potential is thus

V ¼ MðQÞ exp i Qx� xQtð Þ½ � þ exp �i Qx� xQtð Þ½ �
� �

;

(66)

with the amplitude

MðQÞ ¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hQ2

2XcqcxQ

s
¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hQ

2Xcqcvs

s
: (67)

Equation (58) gives the transition rate for an electron in

an initial state jiki, which is scattered to a final state j with a

wave vector k0 by a phonon with wave vector Q ¼ q; qz½ �T,

where q corresponds to the in-plane component. Using the

definition of the three-dimensional wave functions in Eq. (2),

the corresponding matrix element of the perturbation poten-

tial Eq. (66) is with Eq. (56) given by

V6
jk0;ik ¼

MðQÞ
S

ð
S

exp i k6q� k0
� �

r
	 


d2rF6
ji qzð Þ; (68)

with the form factor

F6
ji qzð Þ ¼

ð1
�1

w�j zð Þexp 6iqzzð Þwi zð Þdz: (69)

For bound states, wi;j can be chosen to be real, and we

have jFþji qzð Þj2 ¼ jF�ji qzð Þj2 ¼ jFji qzð Þj2. The scattering rate

obtained from Eq. (58) is thus

W6
ik;jk0 Qð Þ ¼ 2pð Þ3

�hS
NQ þ

1

2
6

1

2

� �
jMðQÞj2jFji qzð Þj2


 d k7q� k0
� �

d Ejk0 � Eik6�hxQ

� �
; (70)

where Wþ
ik;jk0

and W�ik;jk0 refer to emission and absorption,

respectively. Here, we have used that j
Ð

Sexp i k6q� k0ð Þr½ �
d2rj2 can be approximated by 4p2Sd k7q� k0ð Þ for suffi-

ciently large in-plane cross sections S. Since M(Q) refers to a

single phonon, the phonon occupation number of a mode in

thermal equilibrium has been added in Eq. (70), given by the

Bose-Einstein distribution

NQ ¼ exp
�hxQ

kBTL

� �
� 1

� ��1

: (71)

For emission, the factor NQþ 1 is used to also include spon-

taneous emission processes.

The total transition rate from a given initial state jiki to

a subband j is obtained by summing over all wave vectors k0

and Q. These sums can be converted to integrals using Eqs.

(61) and (62). With Eqs. (67) and (70), we thus obtain the

total transition rate from a given initial state jiki to a sub-

band j132

W6
ik;j ¼

N2

8p2qcvs

ð
Q NQ þ

1

2
6

1

2

� �
jFji qzð Þj2


 d Ej;k7q � Eik 6 �hxQ½ �d3Q: (72)

Since acoustic phonons do not carry much energy, often

the quasi-elastic approximation is applied, treating acoustic

phonon scattering as elastic process. This is achieved by

neglecting the phonon energy term 6�hxQ in Eqs. (70) and

(72). Besides, we can approximate Eq. (71) as

NQ 	 NQ þ 1 	 kBTL

�hxQ

	 kBTL

�hvsQ
; (73)

for all but the lowest temperatures, which is referred to as

equipartition approximation. Thus, we obtain

W6
ik;jk0 Qð Þ ¼ N2 4p3kBTL

Xcqcv2
s S�h
jFji qzð Þj2


 d k 7 q� k0
� �

d Ejk0 � Eik
� �

: (74)

With Eqs. (61) and (62), we furthermore obtain W6
ik;j Qð Þ ¼ 0

for Ej > Eik, and otherwise

W6
ik;j ¼ N2

kBTLm
k
j

4pqcv2
s �h3

ð1
�1
jFji qzð Þj2dqz: (75)

The final wave vector magnitude k0 is then given by Eq. (59).

With Eq. (69), we obtainð1
�1
jFji qzð Þj2dqz ¼ 2p

ð1
�1
jwj zð Þj2jwi zð Þj2dz: (76)

Thus, the total transition rate is given by

Wik;j ¼ N2
kBTLm

k
j

qcv2
s �h3

ð1
�1
jwj zð Þj2jwi zð Þj2dz; (77)

which includes both emission and absorption and thus con-

tains an additional factor of 2.

b. Transverse optical phonons. Transverse optical pho-

nons are treated in a similar manner as acoustic phonons.

Here, adjacent atoms move in opposite directions. Thus, the

crystal vibrations cannot be described as an elastic contin-

uum as for acoustic phonons, but correspond rather to oscil-

lations of the two sublattices with respect to each other. As a

consequence, the potential change is directly a function of

the displacement vector u, dVc ¼ DTOu ¼ DTOu. Here, DTO

is the optical deformation potential field which assumes a

different value for different kinds of intra- and intervalley

transitions, and DTO is the component parallel to u. For opti-

cal phonons, xQ reaches an extremum xQ ¼ xTO for Q¼ 0,

and for small Q, the dispersion relation can thus be approxi-

mated by xQ ¼ xTO (see Fig. 12). The scattering rate for an

electron from an initial state jiki to a final state jjk0i due to

phonons with wave vector Q is again given by Eq. (70), with

011307-20 C. Jirauschek and T. Kubis Appl. Phys. Rev. 1, 011307 (2014)



MðQÞ ¼ DTO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2XcqcxTO

s
: (78)

In analogy to Eq. (72), we obtain the total transition rate

W6
ik;j ¼

D2
TO

8p2qcxTO

ð
NQ þ

1

2
6

1

2

� �
jFji qzð Þj2


 d Ej;k7q � Eik6�hxTO½ �d3Q: (79)

Approximating xQ ¼ xTO, the phonon number NQ in Eq.

(79) does not depend on Q, and thus we can set NQ¼NPh.

With Eq. (76), the result then simplifies to

W6
ik;j ¼

D2
TOm

k
j

2qcxTO�h2
NPh þ

1

2
6

1

2

� �



ð1
�1
jwj zð Þj2jwi zð Þj2dz; (80)

for Ej � Eik7�hxTO, and becomes 0 otherwise.

2. Longitudinal optical phonons

As for TO phonons, adjacent atoms move in opposite

directions for LO phonons. Again the dispersion relation can

be approximated with a constant value xQ ¼ xLO for small

Q (see Fig. 12), where �hxLO is the LO phonon energy at

Q¼ 0. Polar semiconductors contain different types of atoms

carrying effective charges. For two different atoms with

masses mA and mB in a unit cell, these effective charges are

given by 6qeff with q2
eff ¼ �0x2

LOln�1
c ð��1

r;1 � ��1
r;0 Þ.

61 Here,

l�1 ¼ m�1
A þ m�1

B is the inverse reduced mass, and nc is the

number of cells per unit volume. Furthermore, �r;0 denotes

the static dielectric constant and �r;1 is the dielectric con-

stant at very high frequencies where the ions cannot respond

to a field anymore and thus only the electronic polarization

remains. For LO waves, the out-of-phase movement of the

atoms causes a local dipole moment p tð Þ ¼ qeffu tð Þ, where

u ¼ U sin Qx� xQtð Þ now indicates the relative displace-

ment of the atoms in the unit cell; by contrast, transverse

waves do not generate dipoles. The amplitude for excitation

by a single phonon is given by Eq. (64) where qc is replaced

by lnc. The resulting ionic polarization is Pion ¼ pnc, and

the electric field E can be obtained from the material equa-

tion D ¼ �0Eþ Pion with D 5 0 due to the absence of free

carriers. With the potential V ¼ e
Ð

Edx, the resulting scatter-

ing rate from a state jiki to jjk0i is again given by Eq. (70),

where

MðQÞ ¼ 1

2Q
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1

0 ��1
r;1 � ��1

r;0

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hxLO

Xc

r
: (81)

The total transition rate from a given initial state jiki to

a subband j is again obtained by summing over all wave vec-

tors k0 and Q, using Eqs. (61) and (62). For Ej � Eik7�hxLO,

we obtain

W6
ik;j ¼

m
k
j xLOe2

8p2�h2�0

��1
r;1 � ��1

r;0

� �
NPh þ

1

2
6

1

2

� �ð2p

0

J qð Þdh;

(82)

and W6
ik;j ¼ 0 otherwise. Here,

J qð Þ ¼
p
q

ð ð1
�1

w�j zð Þwj z0ð Þwi zð Þw�i z0ð Þ


 exp �qjz� z0j
� �

dzdz0 (83)

with the in-plane phonon wave vector magnitude

q ¼ k2 þ k02 � 2kk0coshð Þ1=2
; (84)

where k0 is given by Eq. (60) with x0 ¼ xLO.

a. Corrections due to screening, hot phonons, phonon

modes, and lattice heating. In a heterostructure, the assump-

tion of bulk phonon modes is justified for acoustic phonons,

but not necessarily for LO phonons. The LO phonon modes

arising from different dielectric constants in the well and bar-

rier material can be described by microscopic and macro-

scopic approaches. The macroscopic dielectric continuum

model, which is widely used in this context, yields slab

modes which are confined in each layer, and interface modes

corresponding to exponential solutions around the interfa-

ces.140 However, it has been shown that the bulk mode

approximation is valid for most QCL designs.48,101

Specifically, for not too different compositions of the barrier

and well material and thus similar values of �r;0, the use of

bulk modes is a good approximation.101

Screening can be included by changing Eq. (81) to141,142

MðQÞ ¼ Q

2 Q2 þ q2
s

� � e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1

0 ��1
r;1 � ��1

r;0

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hxLO

Xc

r
; (85)

where qs is the inverse screening length. For Eq. (83), we

then obtain with ~q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ q2

s

p
J qð Þ ¼

p
~q

ð ð1
�1

w�j zð Þwj z0ð Þwi zð Þw�i z0ð Þexp �~qjz� z0j
� �


 1� jz� z0jq2
s

2~q
� q2

s

2~q2

 !
dzdz0: (86)

The simplest model is to use Debye screening with the bulk

inverse Debye screening length

qs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nee2

�0�r;0kBTL

s
; (87)

where ne is the averaged three-dimensional electron density.

However, Debye screening is generally only valid for high

temperatures,143 since qs diverges for TL ! 0.

Deviations from the equilibrium phonon distribution

Eq. (71) due to phonon emission and absorption in the heter-

ostructure, also referred to as hot phonons, are frequently

considered in simulations.104,144 The hot phonon effect is

commonly incorporated by using a relaxation time approach,

describing the decay of LO phonons into other phonon

modes by a corresponding lifetime.145
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Typically, in simulations it is assumed that the lattice

temperature of the gain medium is identical to a given heat

sink temperature or to the room temperature. However, this

approximation is only legitimate for pulsed operation at low

duty cycle, and generally fails for continuous wave opera-

tion.146 Lattice heating due to the dissipated electrical power

can be self-consistently modeled by coupled carrier transport

and thermal simulations,147,148 yielding the actual temperature

profile. The temperature distribution is computed by solving

the heat diffusion equation, where the heat generation rate is

obtained from the carrier transport simulation based on the

dissipated electrical power or the LO phonon scattering rate.

C. Electron-electron scattering

Electron-electron scattering arises from the collision of

electrons with other electrons. More precisely, this scattering

mechanism can be divided into two main contributions, the

short-range interaction between two electrons via the

screened Coulomb potential and the long-range electron-

plasmon coupling.149 The latter is usually neglected in QCL

simulations and is also not considered here, since it only

becomes relevant at elevated doping levels.

Many-electron effects are to lowest order already con-

sidered in the Poisson equation, Eq. (20), corresponding to a

mean field treatment of charges. In the semiclassical treat-

ment, an inclusion of higher order effects is obtained by cor-

responding scattering rates. Electron-electron scattering is

much more computationally demanding than the single-

electron processes, hampering its inclusion in quantum me-

chanical simulations of QCLs beyond the mean-field

approximation.118

In semiclassical simulations, electron-electron scattering

is typically implemented as a two-electron process.141,150 An

electron in an initial state jiki scatters to a final state jjk0i,
accompanied by a transition of a second electron from a state

ji0k0i to jj0k00i. Nonparabolicity effects have for example

been considered by Bonno and Thobel.55 To facilitate the

treatment, we assume here an identical mass m* for all sub-

bands. The total scattering rate from jiki to a subband j is

then obtained as141,150

Wik;j ¼
m�

4p�h3S

X
i0;j0;k0

fi0 k0ð Þ
ð2p

0

dhjMii0jj0
qð Þj2; (88)

with the in-plane cross section area S and carrier distribution

function fi0 k0ð Þ for the state ji0k0i. h is the angle between

g ¼ k0 � k and g0 ¼ k00 � k0, and q ¼ k� k0 (with q ¼ jqj)
denotes the exchanged wave vector. For the definition of the

Coulomb matrix element, different conventions exist.141,151

Here, we use the widely employed convention of Goodnick

and Lugli,110,141,150,152 where the bare Coulomb matrix ele-

ment is with � ¼ �0�r;0 given by

Vb
ii0jj0

qð Þ ¼
e2

2�q

ð1
�1

dz

ð1
�1

dz0½wi zð Þwi0
z0ð Þ


 w�j zð Þw�j0 z0ð Þexp �qjz� z0j
� �

�: (89)

Electron-electron scattering is sensitive with respect to the

spin. Furthermore, screening has to be considered, caused by

the response of the other electrons to changes in the electro-

static field associated with the scattering process. Often, only

scattering of electron pairs with antiparallel spin is consid-

ered, since the contribution of carriers with parallel spin is

smaller.141,153 Furthermore, basic models consider screening

by a constant screening wave number qs. For the transition

matrix element Mii0jj0
, we then obtain

jMii0jj0
qð Þj2 ¼

1

2

���� q

qþ qs

Vb
ii0jj0

qð Þ
����
2

; (90)

where the factor q= qþ qsð Þ corrects the bare Coulomb ma-

trix element for screening effects, and the factor 1/2 arises

from neglecting parallel spin contributions. From energy

conservation, we obtain for the exchanged wave vector with

g ¼ jgj and g2
0 ¼ 4m� Ei þ Ei0 � Ej � Ej0ð Þ=�h2

q ¼ 1

2
½2g2 þ g2

0 � 2gðg2 þ g2
0Þ

1=2
cosh�1=2: (91)

A frequently used basic screening model is the single sub-

band screening approximation, assuming that most electrons

in each period reside in a single subband i, corresponding to

the ground state. The obtained screening wave number is

then110,152

qs ¼
e2

2�

m�

p�h2
fi k ¼ 0ð Þ: (92)

1. Advanced spin and screening models

Advanced implementations of spin and screening effects

have been developed for a more accurate description of

electron-electron scattering.68 Screening models with vary-

ing degrees of sophistication are employed to obtain the

screened Coulomb matrix elements Vs
ii0jj0

from Vb
ii0jj0

in Eq.

(89). In the random phase approximation (RPA), Vs
ii0jj0

qð Þ is

found by solving the equation system154

Vs
ii0jj0
¼ Vb

ii0jj0
þ
X
mn

Vb
imjnPmnVs

mi0nj0
: (93)

Here, Pmn qð Þ is the polarizability tensor, given in the long

wavelength limit ðq! 0Þ by

Pmn ¼

ns
m � ns

n

Em � En
; m 6¼ n;

� m�

p�h2
fn 0ð Þ; m ¼ n:

8>><
>>: (94)

Commonly, simplified screening models using a constant

screening wave number qs are employed to avoid the numeri-

cal load associated with solving Eq. (93).110,152 Vs
ii0jj0

is then

obtained by replacing the prefactor e2= 2�qð Þ in Eq. (89) by

e2= 2� qþ qsð Þ½ �. This implementation is also used in Eq.

(90). The single subband screening model, Eq. (92), can be

obtained from Eq. (93) by assuming that most of the elec-

trons reside in a single subband, and screening is caused only
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by this subband.110,152 A somewhat improved approach

which considers all subbands equally is the modified single

subband model152 with

qs ¼
e2

2�

m�

p�h2

X
i

fi k ¼ 0ð Þ; (95)

where i sums over the subbands in one period. An alternative

approach consists in treating intersubband scattering as

unscreened, thus applying Eq. (95) only to the intrasubband

matrix elements.46

For collisions of electrons with parallel spin, interference

occurs between Vs
ii0jj0

and the “exchange” matrix element

Vs
ii0j0j.

153 Accounting for this exchange effect, we obtain150,153

jMii0jj0
j2 ¼ pa

2
½jVs

ii0jj0
q�ð Þj2 þ jVs

ii0j0j qþ
� �
j2�

þ pp

2
jVs

ii0jj0
q�ð Þ � Vs

ii0j0j qþ
� �
j2; (96)

where

q6 ¼ 1

2
½2g2 þ g2

062gðg2 þ g2
0Þ

1=2
cos h�1=2; (97)

and pa¼ pp¼ 1/2 are the probabilities for antiparallel and

parallel spin collisions, respectively. There are two common

approaches to implement electron-electron scattering without

explicitly considering the spin dependence. One method

which has been used in Eq. (90) is to completely neglect the

parallel spin collisions,141,153 implying pa¼ 1/2, pp¼ 0 in

Eq. (96). This approach tends to overestimate the exchange

effect. Another common method is to ignore the exchange

effect, i.e., parallel spin collisions are treated the same way

as antiparallel spin contributions.153 This corresponds to

pa¼ 1, pp¼ 0 in Eq. (96).

Figure 13 contains EMC simulations of the gain spectra

for different implementations of screening and spin effects.68

In Fig. 13(a), the exchange effect is fully included, but dif-

ferent screening models are employed. The reference curve

is based on the exact evaluation of the RPA (solid curve).

Applying the simplified screening model Eq. (95) to all ma-

trix elements overestimates the screening of the intersubband

elements, thus leading to an underestimation of scattering.

The resulting spectral gain profile (dashed curve) features an

excessively narrow gain bandwidth and enhanced peak gain.

On the other hand, completely ignoring the screening effect

for the intersubband matrix elements overestimates the inter-

subband scattering, thus resulting in a lowered and broad-

ened gain profile (dotted curve). In Fig. 13(b), screening is

included in the RPA. Results are shown for pa¼ pp¼ 1/2

(solid curve), pa¼ 1, pp¼ 0 (dotted curve), pa¼ 1/2, pp¼ 0

(dashed curve), and pa¼ pp¼ 0 (dashed-dotted curve). The

last case, which corresponds to completely neglecting

electron-electron scattering in the simulation, yields two nar-

row gain spikes at around 2.8 and 3.6 THz, largely deviating

from the experimental electroluminescence measurements.69

Ignoring the exchange effect (dotted curve) leads to an over-

estimation of the scattering, and thus a reduced peak gain

and increased gain bandwidth. On the other hand, completely

neglecting parallel spin collisions (dashed curve) leads to an

underestimation of scattering and thus an enhanced peak

gain.

D. Elastic scattering processes

Impurity scattering has been shown to play an important

role in QCLs,102,143,151 where it is often the dominant elastic

scattering process. Also interface roughness can have a con-

siderable impact on QCL operation.107,155–157 Alloy scattering

occurs in semiconductor alloys such as AlGaAs and other ter-

nary materials, and, usually, only has to be considered for the

well material since the wave functions are largely localized in

the wells.36 For elastic intrasubband scattering in the conduc-

tion band C valley, we have k ¼ k0 due to energy conserva-

tion, i.e., elastic intrasubband scattering does not affect the

carrier distribution due to in-plane isotropy.

1. Impurity scattering

Impurity scattering in QCLs arises from the doping, e.g.,

the ionized donors in the heterostructure. Charged impurities

are to lowest order already considered in the Poisson equa-

tion, Eq. (20), corresponding to a mean field treatment of

charges. An inclusion of higher order effects is in the semi-

classical treatment obtained by corresponding scattering

rates. The perturbation potential due to a charged impurity at

position x0; y0; z0ð ÞT is with r0 ¼ x0; y0ð ÞT and � ¼ �0�r;0 given

by the Coulomb potential

V ¼ � 4p�ð Þ�1
e2 jr� r0j2 þ jz� z0j2
� ��1=2

: (98)

For the definition of the corresponding matrix element, vari-

ous conventions exist.151,152 In analogy to Eq. (89) for

electron-electron scattering, we define the bare matrix ele-

ment as152

FIG. 13. EMC simulation results for the spectral gain vs. frequency of a

bound-to-continuum terahertz QCL69 at a lattice temperature TL¼ 10 K. (a)

Comparison of different screening models: RPA (solid curve), modified sin-

gle subband model for all matrix elements (dashed curve) or for the intrasub-

band elements only (dotted curve), thus treating intersubband elements as

unscreened. (b) Comparison of different spin implementations. Shown are

results for fully taking into account (solid curve) and ignoring the exchange

effect (dotted curve), and ignoring parallel spin collisions (dashed curve).

For comparison, the result obtained with no electron-electron scattering is

also displayed (dashed-dotted curve). Reprinted with permission from J.

Appl. Phys. 107, 013104 (2010). Copyright 2010 AIP Publishing LLC.68
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Vb
ij z0; qð Þ ¼ � e2

2�q

ð1
�1

wi zð Þw�j zð Þexp �qjz� z0j
� �

dz: (99)

The scattering rate is obtained from Eq. (57) as

Wik;jk0 ¼
2p
S�h

ð
jVb

ij z0; qð Þj2nD z0ð Þdz0d Ejk0 � Eik
� �

¼ pe4

2S�2�hq2
Fij qð Þd Ejk0 � Eik

� �
; (100)

with the form factor

Fij qð Þ ¼
ð

dz0nD z0ð Þ



ð1
�1

wi zð Þw�j zð Þexpð�qjz� z0jÞdz

� �2

: (101)

Here, we have summed over the donors to include the effect

of all ionized impurities, corresponding to an integration

S
Ð

…nD zð Þdz, with the doping concentration nD zð Þ.
Furthermore, an additional factor S�2 has been added since

the prefactor S�1 is omitted in Eq. (99). Due to energy con-

servation Eik ¼ Ejk0 , the final wave vector magnitude k0 is

given by Eq. (59).

The total transition rate from a given initial state jiki to

a subband j is found by summing over all final wave vectors

k0 using Eq. (61). We obtain54,152

Wik;j ¼
m
k
j e4

4p�2�h3

ðp

0

Fij qð Þ
q2

dh; (102)

with q hð Þ ¼ jk� k0j ¼ k2 þ k02 � 2kk0 cos hð Þ1=2
. With Eq.

(59), this yields

q hð Þ ¼ 1þ
m
k
j

m
k
i

0
@

1
Ak2 þ q2

0 � 2k
m
k
j

m
k
i

k2 þ q2
0

0
@

1
A

1=2

cos h

2
64

3
75

1=2

;

(103)

where q2
0 ¼ 2m

k
j Ei � Ejð Þ=�h2. Values of h resulting in com-

plex q hð Þ should be excluded from the integration in Eq.

(102) since scattering is then impossible.

a. Screening. As for electron-electron scattering dis-

cussed in Sec. VI C, the random phase approximation can

also be used to obtain the screened matrix elements Vs
ij z0; qð Þ

for impurity scattering from the bare elements, Vb
ij z0; qð Þ in

Eq. (99). We obtain151,152

Vs
ij ¼ Vb

ij þ
X
mn

Vb
imjnPmnVs

mn; (104)

with Vb
imjn and Pmn defined in Eqs. (89) and (94), respec-

tively. In Eq. (100), Vb
ij z0; qð Þ has then to be replaced by

Vs
ij z0; qð Þ, and also Eq. (102) has to be changed correspond-

ingly. As for electron-electron scattering, also here often

simplified screening models using a constant screening wave

number qs are employed to avoid the numerical load

associated with solving Eq. (104).54,151 Common models to

handle screening are the model of Brooks and Herring158

and the model of Conwell and Weisskopf.159 While the

model of Conwell and Weisskopf is based on a

Rutherford-like scattering of electrons on bare Coulomb

potentials with a cut-off radius, Brooks and Herring describe

the impurity potential as being screened by free carriers.

This latter approach is valid, if the constant screening length

is much larger than the electronic wave length, which

requires high temperatures and low carrier densities. For

higher densities and low temperatures, the incorporation of

more realistic screening has been shown to be essential,160

whereas the limit of negligible free carrier screening is better

described by the approach of Conwell and Weisskopf.149 A

detailed overview of the various refinements to the approach

of Brooks and Herring has been given in Ref. 161. Electron

scattering from screened impurities due to Brooks and

Herring will be discussed in more detail in Sec. VIII D 3.

2. Interface roughness scattering

It has been shown that scattering from rough interfaces

can change the QCL performance significantly.107,155–157

There are two fundamentally different models for the inter-

face roughness scattering in literature. In the first model,

rough interfaces of quantum wells cause fluctuating well

widths and fluctuating confinement energies of resonant

states. In this model, the scattering potential is identified

with the change of the well eigenenergies.162,163 In the sec-

ond model, fluctuations of the band offset yields the scatter-

ing potential.164,165 The latter model may be favored for

generality, since it does not require the existence of confined

states, nor the distinguishability of level broadening by rough

interfaces from other mechanisms. Nag has shown in Ref.

166 that both models agree well for quantum wells of various

dimensions and materials. Thus, we consider interface

roughness scattering due to the imperfections in the interface

between the barrier and well material in the heterostructure,

causing a local deviation of the interface D x; yð Þ ¼ D rð Þ
from its average position z0 as illustrated in Fig. 14. Since it

is not feasible to measure D rð Þ directly, the interface rough-

ness is characterized by its standard deviation D and correla-

tion length K. Typically, a Gaussian autocorrelation function

is assumed162

hD rð ÞD r0ð Þi ¼ 1

S

ð
D rð ÞD rþ dð Þd2r

¼ D2 exp � d2

K2

� �
; (105)

with d ¼ r0 � r. A change D rð Þ of the interface position cor-

responds to a perturbing potential

V ¼ 6Vo H z� z0ð Þ � H z� z0 � D rð Þð Þ
	 


; (106)

where z0 and Vo are the average interface position and the

band offset, respectively. The “þ” (“–”) sign is obtained if

the barrier (well) is located at z < z0. Furthermore, H denotes

the Heaviside step function. Since D rð Þ is small, i.e., on the

order of a monolayer, we can approximate wi;j z0 þ D rð Þð Þ
	 wi;j z0ð Þ. Thus, we obtain with Eq. (55)
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Vjk0;ik ¼ 6
Vo

S
wi z0ð Þw�j z0ð Þ

ð
d2rD rð Þexp iqrð Þ; (107)

and

jVjk0;ikj2 ¼
V2

o

S2
jwi z0ð Þw�j z0ð Þj2



ð

d2d exp iqdð Þ
ð

d2rD rð ÞD rþ dð Þ
� �

; (108)

with q ¼ k� k0. Assuming a Gaussian autocorrelation Eq.

(105), we obtain from Eq. (57) the scattering rate

Wik;jk0 ¼
2p2

�hS
V2

oD
2K2
X

n

jwi znð Þw�j znð Þj2


 exp � 1

4
K2q2

� �
d Ejk0 � Eik
� �

; (109)

where we additionally sum over all interfaces, located at

positions zn. Due to the energy conservation Eik ¼ Ejk0 , the

final wave vector magnitude k0 is given by Eq. (59).

The total transition rate from a given initial state jiki to

a subband j is found by summing over all final wave vectors

k0 using Eq. (61). We obtain

Wik;j ¼
m
k
j

�h3
V2

oD
2K2
X

n

jwi znð Þw�j znð Þj2



ðp

0

dh exp � 1

4
K2q2

� �
H q2
� �

; (110)

where q hð Þ is again given by Eq. (103), and values of h with

q2 < 0 should be excluded from the integration since then

scattering cannot occur.

The characterization of interface roughness by the pa-

rameters K and D is somewhat phenomenological, since it is

difficult to directly extract them from experimental measure-

ments of the interface profile. Rather, they are typically

chosen to reproduce the measured optical transition line-

widths.167 For GaAs-based terahertz QCLs, frequently used

values are K 	 10 nm and D 	 0:1 nm.143,155 In Fig. 15,

EMC simulation results for the gain profile are shown for

two different types of terahertz QCLs.107 In addition to scat-

tering of electrons with phonons, impurities, and other elec-

trons, interface roughness scattering with different values of

the interface roughness mean height has been considered.

Results are shown for D ¼ 0 (no interface roughness scatter-

ing), 0.12 nm and 0.3 nm (corresponding to one monolayer

of GaAs). Depending on the assumed value of D, interface

roughness can lead to considerable broadening of the gain

profile and reduction in the peak gain. The phonon depopula-

tion structure in Fig. 15(a) is less sensitive to interface

roughness than the bound-to-continuum structure in Fig.

15(b), since the wave functions in the minibands of the latter

structure are less localized and thus extend across more

interfaces.

3. Alloy scattering

In a ternary semiconductor alloy AxB1–xC such as

AlxGa1–xAs, the A and B atoms are randomly distributed on

the corresponding lattice sites. Thus, for a zinc-blende struc-

ture, each unit cell contains an atom of type A or B and an

atom of type C. The potential in the semiconductor is then

given by36,168

Vc xð Þ ¼
X

n

Vn x� xnð Þ; (111)

where xn denotes the position of unit cell n. Furthermore,

Vn¼VAC (Vn¼VBC) if the unit cell contains an atom of type

A (B), where VAC and VBC are the potentials of the binary

materials AC and BC. The conduction band profile of alloys

is typically considered in virtual crystal approximation,

obtained by averaging over the contributions of the two alloy

materials AC and BC,

Vc;VCA ¼
X

n

xVAC x� xnð Þ þ 1� xð ÞVBC x� xnð Þ
	 


: (112)

The perturbing potential corresponds then to the difference

between the real conduction band energy Vc xð Þ and Vc,VCA

obtained by the virtual crystal approximation

FIG. 14. Interface between two heterostructure layers consisting of different

materials. The local deviation from a perfect interface due to roughness is

expressed by D x; yð Þ.

FIG. 15. Simulation results for the spectral gain vs. frequency, as obtained

for a correlation length K ¼ 10 nm and different values of the interface

roughness mean height D. (a) 3.4 THz resonant phonon depopulation struc-

ture; (b) 3.5 THz bound-to-continuum structure. Reprinted with permission

from J. Appl. Phys. 105, 123102 (2009). Copyright 2009 AIP Publishing

LLC.107
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V ¼ Vc � Vc;VCA ¼
X

n

cndV x� xnð Þ; (113)

with dV xð Þ ¼ VAC xð Þ � VBC xð Þ and cn ¼ 1� xð Þ ðcn ¼ �xÞ
if the unit cell contains an atom of type A (B).

The scattering potential dV is effective within the unit

cell, and also screening effects are usually neglected due to

the short-range nature of the scattering potential.36 Thus, on

the scale of the envelope functions w xð Þ which are slowly

varying on the atomic scale, dV can be modeled as a d func-

tion potential36

dV xð Þ ¼ dVX0d xð Þ; (114)

where X0 denotes the unit cell volume, given by X0 ¼ a3=4

for a zinc-blende structure with lattice constant a.

Furthermore, dV is the alloy scattering potential, which

approximately corresponds to the conduction band offset of

the binary materials involved, if they are not strongly lattice-

mismatched.36 Generally, however, dV deviates from the

conduction band differences,156 and should be estimated

from empirical tightbinding parameters.169–172 Using Eqs.

(113) and (114), the matrix element Eq. (55) becomes with

q ¼ k� k0

Vjk0;ik ¼ S�1dVX0

X
n

cnw
�
j znð Þwi znð Þexp iqrnð Þ; (115)

and the square modulus is given by

jVjk0;ikj2 ¼ S�2 dVX0ð Þ2
X

n

X
m

fcncmexp iq rn � rmð Þ
	 



 w�j znð Þwj zmð Þwi znð Þw�i zmð Þg: (116)

For calculating the average of jVjk0;ikj2, the expectation value

hcncmi must be determined. Each unit cell has the probability

x of containing an atom of type A, and 1 – x of containing an

atom of type B. Thus, we obtain hcncmi ¼ 0 for m 6¼ n and

hcncmi ¼ x 1� xð Þ for m¼ n. Furthermore replacing the sum

over the unit cell positions
P

xn
f znð Þ by an integral

X�1
0

Ð
f zð Þd3x ¼ X�1

0 S
Ð

f zð Þdz, we obtain

hjVjk0;ikj2i ¼ S�1X0 dVð Þ2x 1� xð Þ



ð1
�1
jwj zð Þwi zð Þj2dz: (117)

From Eq. (57), we obtain the scattering rate

Wik;jk0 ¼
2p
�hS

d Ejk0 � Eik
� �



ð1
�1

X0 dVð Þ2x 1� xð Þjwjwij
2
dz; (118)

where X0 zð Þ; dV zð Þ, and x zð Þ have been taken into the inte-

gral to account for varying alloy compositions along the

growth direction z. Due to the energy conservation

Eik ¼ Ejk0 , the final wave vector magnitude k0 is given by

Eq. (59). The total transition rate from a given initial state

jiki to a subband j is with Eq. (61)

Wik;j ¼ m
k
j �h�3

ð1
�1

X0 dVð Þ2x 1� xð Þjwjwij
2
dz (119)

for Ej < Eik, and 0 otherwise.

E. Self-consistent rate equation approach

In the self-consistent rate equation approach, the inter-

subband scattering rates in the rate equation Eq. (36) or Eq.

(37) are self-consistently determined based on the corre-

sponding Hamiltonian. Thus, this approach only relies on

well known material parameters such as the effective mass,

and not on experimental or empirical lifetimes as in Sec.

V A. Offering a compromise between accuracy and predic-

tive power on the one hand and relative numerical efficiency

on the other hand, the self-consistent rate equation approach

is widely used for the simulation of QCLs.67,77,91–93,173

Although extensions of the self-consistent rate equation

approach to include the light field have been presented,77 the

optical cavity field is neglected in most cases. Such simula-

tions yield the unsaturated population inversion or gain, indi-

cating if lasing can start at all, but giving no information

about the actual lasing operation.

1. Intersubband scattering rates

The number of electrons per unit energy and area in a

thermalized subband i of a 2D system is given by nE
i f FD

i with

the Fermi-Dirac distribution

f FD
i Eikð Þ ¼ exp Eik � EF

i

� �
= kBTið Þ

	 

þ 1

� ��1
; (120)

where EF
i is here a “quasi” Fermi energy describing the

kinetic energy distribution of the electrons within the sub-

band i,132 and Ti is the associated electron temperature.

Furthermore, nE
i is the density of states per unit area and

energy in a 2D system,61 and Eik ¼ Ei þ �h2k2=ð2m
k
i Þ is the

energy of the electrons in subband i with an in-plane wave

vector k. The scattering rate from an initial subband i to a

final subband j is then obtained by averaging over the carrier

distribution. Assuming a Fermi-Dirac distribution in the ini-

tial and final state, we obtain132

ðs mð Þ
ij Þ

�1 ¼

ð1
Ei

f FD
i Eð ÞW mð Þ

ik;j dEð1
Ei

f FD
i Eð ÞdE

: (121)

Here, nE
i has been omitted in the enumerator and denomina-

tor because it is constant, nE
i ¼ m

k
i = p�h2ð Þ for E � Ei. The

index m denotes the corresponding scattering mechanism.

W
mð Þ

ik;j is, for example, given by Eqs. (82) and (88) for LO

phonon and electron-electron scattering, respectively. The

total rate is obtained by summing over the individual contri-

butions of the different scattering mechanisms, i.e.,

s�1
ij ¼

P
mðs

mð Þ
ij Þ

�1
.

The sheet density in a subband i, i.e., electron number

per unit area, is given by
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ns
i ¼

ð1
Ei

f FD
i Eð ÞnE

i dE

¼ m
k
i kBTi

p�h2

EF
i � Ei

kBTi
þ ln 1þ exp �EF

i � Ei

kBTi

� �� �� �
:

(122)

Furthermore expressing the carrier energy in terms of the in-

plane wave vector, we obtain with dE ¼ �h2ðmki Þ
�1kdk132

ðs mð Þ
ij Þ

�1 ¼

ð1
0

f FD
i Ei þ �h2k2= 2m

k
i

� �h i
W

mð Þ
ik;j kdk

pns
i

: (123)

An additional factor f1� f FD
j ½Ei þ �h2k2=ð2m

k
i Þ6E0�g can be

included in the integral of Eq. (123), accounting for the final

state blocking due to Pauli’s exclusion principle.132 This cor-

rection is only relevant for high doping levels. Here, E0 is 0

for elastic scattering mechanisms and corresponds to the TO

or LO phonon energy for optical phonon absorption (“þ”

sign) and emission (“–” sign), respectively. The Fermi

energy can be calculated from Eq. (122)

EF
i � Ei ¼ kBTiln exp

ns
ip�h2

m
k
i kBTi

 !
� 1

" #
: (124)

For lightly doped semiconductors, as is often the case in

QCLs, we have Eik � EF
i

� �
� kBTi in Eq. (120), which then

approaches a classical Maxwell-Boltzmann distribution

f MB
i Eikð Þ ¼ exp � Eik � EF

i

� �
= kBTið Þ

	 

: (125)

Under this condition, Eq. (123) simplifies to

s mð Þ
ij

� ��1

¼ �h2

m
k
i kBTi

ð1
0

exp � �h2k2

2m
k
i kBTi

 !
W

mð Þ
ik;j kdk: (126)

Numerically, the integration of Eq. (123) or Eq. (126) is

performed from Ei up to a sufficiently large maximum value,

e.g., the highest value of the simulated potential profile

V zð Þ.132

2. Rate equations

In the self-consistent rate equation approach, typically

the QCL is modeled as a biased periodic heterostructure,

excluding effects such as domain formation.127 Then the

simulation can be restricted to a single representative period

far away from the contacts, additionally applying periodic

boundary conditions.92 This corresponds to solving Eq. (36)

with the self-consistently calculated scattering rates, Eq.

(123). While Eq. (36) in principle includes the transitions to

all equivalent levels in the different periods, in practice only

scattering between the central period and adjacent periods

has to be considered. Frequently the 1 1
2

period model is used,

which applies to QCLs where a period consists of an injector

region and an active region.91,92 Here, for the active region

states of the central period, only scattering transitions involv-

ing other states of the central period and the right-

neighboring injector region are considered in Eq. (36).

Analogously, for the states of the injector region, only scat-

tering involving states of the central period and the left-

neighboring active region are taken into account. Since the

scattering rates Eq. (123) in general depend on the electron

densities ns
i , a direct solution of Eq. (36) is not possible, and

an iterative scheme is commonly used. For simulations

without lasing included, i.e., Wopt
ij ¼ 0 in Eq. (36), setting

dtn
s
i ¼ 0 yields the steady state solution92

ns
i ¼

X
j6¼i

ns
js
�1
ji

.X
j6¼i

s�1
ij ; (127)

where i ¼ 1::N refers to the central period containing N sub-

bands. The summation index j now only includes subbands in

the central period and adjacent periods, as discussed above.

For subbands outside the central period, the sheet density ns
j

of the equivalent level in the central subband is used. For the

numerical computation of the subband populations, initially

identical electron densities ns
i ¼ ns=N are assumed. Each iter-

ation involves computing the scattering rates with Eq. (123)

or Eq. (126), calculating the new values for ns
i using

Eq. (127), and renormalizing the sheet densities so that

Eq. (38) is fulfilled. Convergence can be accelerated by com-

bining the sheet densities of the previous two iterations,

nns;new
i þ 1� nð Þns;old

i , as input for the next iteration,91 where

the relaxation parameter is typically chosen as n ¼ 0:5. The

simulation has converged when the obtained sheet densities

do not significantly change anymore between iterations.

3. Kinetic energy balance method

Since Ti in Eq. (120) is unknown, the scattering rates

[Eq. (123)] have to be evaluated assuming that the electron

temperature in each subband is equivalent to the lattice tem-

perature, Ti¼TL. However, the electron temperature can sig-

nificantly exceed TL in quantum cascade lasers.174 Thus, the

rate equation model has been extended to account for elec-

tron heating, typically assuming an identical electron tem-

perature Ti¼ Te for all subbands.173 The kinetic electron

energy generation rate per period and unit device in-plane

cross section is given by173

RE ¼
XN

i¼1

X
j

X
m

ns
i ðs

mð Þ
ij Þ

�1ðEi � Ej þ E
mð Þ

0 Þ; (128)

where i sums over the subbands of the central period and j
also includes states from adjacent periods, as discussed

above. Furthermore, m sums over the different scattering

contributions, such as LO phonon emission ðE mð Þ
0 ¼ �ELOÞ

and absorption ðE mð Þ
0 ¼ ELOÞ, elastic scattering mechanisms

ðE mð Þ
0 ¼ 0Þ and electron-electron scattering. For inelastic

scattering mechanisms such as phonon-induced transitions,

also intrasubband contributions i¼ j, have to be included.173

Electron-electron scattering is often neglected in Eq. (128)

since the net kinetic energy does not change for the impor-

tant cases where both electrons stay within their respective

subbands or swap the subbands. Also photon transitions do

not change the kinetic energy for parabolic subbands due to
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k conservation.77 The numerical evaluation proceeds as fol-

lows. The average electron temperature corresponds to the

value of Te where RE¼ 0 in Eq. (128). The rate equation is

self-consistently solved as described above for an initial

guess of Te, e.g., Te¼ TL. Based on the obtained ns
i and s mð Þ

ij ,

RE in Eq. (128) is calculated. This procedure is repeated and

the guess for Te is iteratively improved until RE 	 0 is

obtained. Since the assumption of a single effective electron

temperature is not always adequate in QCLs,175 extended

approaches have been developed allowing for different

effective temperatures Ti in the individual subbands.93

F. Ensemble Monte Carlo method

Semiclassically, the carrier transport between states jiki
in a quantum well system is given by the Boltzmann

equation176

dtfik ¼
X

j

X
k0

Wjk0;ikfjk0 �Wik;jk0 fik
� �

; (129)

with the scattering rates Wik;jk0 ¼
P

mW
mð Þ

ik;jk0
, where m sums

over the individual contributions of the different scattering

mechanisms. The distribution function fik tð Þ represents the

probability of the state jiki being occupied at a given time t.
Eq. (129) corresponds to an extended version of the rate

equations Eq. (36), where i and j have been replaced by ik
and jk0, respectively. The physical quantities of interest, such

as the sheet densities ns
i and current density can be extracted

from fik tð Þ. For the numerical evaluation of Eq. (129), typi-

cally the EMC method is used, which is based on statistical

sampling of the scattering events for a large ensemble of car-

riers,149 here Ne 	 104::105 electrons. The large number of

carriers considered allows for an extraction of the physical

quantities as function of t by statistical averaging over the

carrier ensemble. Thus, this method is also applicable to

time dependent processes where we cannot use temporal

averaging as for ergodic systems.149 Furthermore, electron-

electron scattering can be implemented as a two-electron

process where a second electron is randomly chosen as scat-

tering partner.141

1. Simulation technique

Figure 16 contains a schematic diagram of the EMC

algorithm. The system dynamics is evaluated up to a time

tsim, which must be chosen long enough to ensure conver-

gence to the stationary solution. The simulation is divided

into subintervals Dt, where the scattering dynamics is subse-

quently evaluated. Dt should be chosen so small that the av-

erage electron distribution does not change significantly over

the time interval, but big enough to include several scattering

events per electron on average. Assuming periodic boundary

conditions, we can restrict our simulation to a few periods.

Each electron is characterized by its subband i and in-plane

wave vector k. All rates W
mð Þ

ik;j for the various scattering

mechanisms m are computed and tabulated at the beginning

of the simulation to save computational resources. Here, we

have to introduce a discrete grid for the wave vector. Since

in the conduction band C valley, all states jiki in subband i

with the same value k ¼ jkj are equivalent due to in-plane

isotropy, it is practical to use the kinetic energy Ekin

¼ �h2k2=ð2m
k
i Þ instead. The kinetic energy grid then divides

the energy axis into segments n of widths D nð Þ
E centered

around discrete energies E
nð Þ

kin with k nð Þ ¼ ð2m
k
i E

nð Þ
kinÞ

1=2=�h.

However, some rates W
mð Þ

ik;j , such as Eq. (88), depend on

the initially unknown carrier distribution itself, i.e., W
mð Þ

ik;j

¼ W
mð Þ

ik;j tð Þ. This problem can be overcome by tabulating an

upper estimate ~W
mð Þ

ik;j for time dependent scattering rates and

compensating for the too high value by introducing artificial

“self-scattering,” as described further below.

An important quantity is the carrier distribution func-

tion, which can directly be obtained from N
nð Þ

i , denoting the

number of simulated electrons in the nth energy cell of sub-

band i at a time t. With the density of states per unit area and

energy in a 2D system nE
i ¼ m

k
i = p�h2ð Þ,61 the number of

available states in the nth energy cell is nE
i D nð Þ

E S. The simu-

lated device in-plane cross section is with the sheet doping

density per period ns given by S ¼ Ne= nsNpð Þ, where Np cor-

responds to the number of periods over which the Ne simu-

lated electrons are distributed. The carrier distribution

function is then approximately given as

fi Ekin; tð Þ ¼ nsNpN
nð Þ

i tð Þ
nE

i D nð Þ
E Ne

; (130)

where n indicates the energy cell containing the value Ekin.

Equation (130) can also be expressed as a function of

k ¼ ð2m
k
i EkinÞ1=2=�h. Additional temporal averaging of the

carrier distribution function Eq. (130), for example over a

simulation subinterval Dt, further reduces the fluctuations

FIG. 16. Schematic diagram of the EMC algorithm
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resulting from the treatment of the carriers as discrete

particles.

The simulation is initialized by assigning values i and k

to each electron in the ensemble. Here, in principle arbitra-

rily chosen values can be used since Eq. (129) will converge

to its stationary solution after a sufficiently long simulation

time tsim independently of the chosen initial conditions.

However, the required tsim to obtain convergence can be

reduced by assuming a suitable initial electron distribution

which is not too far from the converged solution. For exam-

ple, the carriers can be distributed equally within the sub-

bands, and a thermalized distribution Eq. (125) in each

subband can be assumed. The Monte Carlo method is based

on a stochastic evaluation of the scattering events, assuming

that the electron undergoes scattering after a randomly

selected free flight time tf. For a time independent scattering

rate s�1
0 , the free flight time is given by tf ¼ �s0 ln rð Þ, where

r is a random number evenly distributed between 0 and 1.149

Here, we choose s�1
0 �

P
m

P
j

~W
mð Þ

ik;j , corresponding to

an upper bound for the total outscattering rate Wik tð Þ
¼
P

m

P
jW

mð Þ
ik;j tð Þ, where j¼ i is included in the summations

to account for intrasubband scattering. For each ensemble

electron, the scattering dynamics is evaluated over a simula-

tion subinterval Dt, where the last free flight is continued in

the next subinterval. After each scattering event, the final

subband j of the scattered electron and scattering mechanism

m are randomly selected based on their associated probabil-

ity s0W
mð Þ

ik;j tð Þ. The too high amount of scattering assumed is

corrected by introducing artificial “self-scattering,” which

occurs with a probability 1� s0

P
m

P
jW

mð Þ
ik;j tð Þ and does not

change the carrier state at all.149 Pauli’s exclusion principle

can be considered by subsequently rejecting the occurred

scattering event with a probability fjk0 . The final wave vector

magnitude k0 is obtained from Eq. (59) for elastic scattering,

and from Eq. (60) for inelastic processes. Electron-electron

scattering is in EMC typically implemented as a two-

electron process with a randomly selected partner electron

and scattering angle. To conserve energy for each scattering

event individually, also the partner electron has to undergo

scattering, i.e., the final wave vector has to be determined for

both participating electrons.141

The periodic boundary conditions can, for example, be

implemented by simulating three periods, where the Ne elec-

trons are located in the central period, i.e., Np¼ 1 in

Eq. (130). Electrons scattered to the first or third period are

automatically injected into the equivalent subband of the cen-

tral period.99 By counting the difference DN of electrons scat-

tered from the central period to the left- and right-neighbouring

period, respectively, over a simulation subinterval Dt, the cur-

rent density can be computed as

J ¼ DNe

DtS
¼ DNensNp

DtNe

: (131)

G. Inclusion of the optical cavity field

The optical gain and photon-induced transition rate are

given by Eqs. (52) and (54) for a transition from a level i to a

level j, which here correspond to states jiki and jjk0i, respec-

tively. The dipole matrix element then becomes

dik;jk0 ¼ �ehikjzjjk0i ¼ dijS
�1

ð
S

exp i k0 � kð Þr½ �d2r; (132)

with

dij ¼ �ehijzjji ¼ �e

ð1
�1

w�i zð Þzwj zð Þdz; (133)

and for jdik;jk0 j2, we obtain

jdik;jk0 j2 ¼ 4p2jdijj2S�1d k0 � kð Þ: (134)

Here, we have used that j
Ð

S exp i k0 � kð Þr½ �d2rj2 can be

approximated by 4p2Sd k0 � kð Þ for sufficiently large in-

plane cross sections S. The photon-induced transition rate

given in Eq. (54) now becomes

Wopt

ik;jk0
¼ 4p3

�0cn0�h2S
jdijj2d k0 � kð Þ

X
m

ImLij xm; kð Þ; (135)

where we sum over all relevant cavity modes with frequen-

cies xm and intensities Im to account for multimode lasing.

Adapting Eq. (51) to the present case, the definition of the

Lorentzian lineshape function becomes

Lij x; kð Þ ¼ 1

p

cij kð Þ
c2

ij kð Þ þ ½x� jxijðkÞj�2
; (136)

where xij kð Þ ¼ Eik � Ejkð Þ=�h denotes the resonance fre-

quency and cij kð Þ is the optical linewidth of the transition,

which is given by

cij kð Þ ¼ 1

2

X
‘6¼i

Wik;‘ þ
X
‘6¼j

Wjk;‘

� �
; (137)

when only the lifetime broadening contributions are consid-

ered.107 The total photon-induced transition rate from a

given initial state jiki to a subband j is found from Eq. (135)

by summation over all final wave vectors k0 using Eq. (61)

Wopt
ik;j ¼

p

�0cn0�h2
jdijj2

X
m

ImLij xm; kð Þ: (138)

The transition rate due to spontaneous photon emission can

also be directly calculated from Eq. (138),177 but is usually

negligible compared to other scattering mechanisms in

QCLs. The gain contribution at frequency x of a single elec-

tron in state jiki, i.e., ns
i ¼ 1=S, is obtained from Eq. (52) by

summing over the transitions to all available final states

jjk0i. With Eqs. (61) and (134), we obtain

g xð Þ ¼ px
�h�0cn0SLp

X
j

xij kð Þ
jxij kð Þj

jdijj2Lij x; kð Þ: (139)

For Eik < Ejk, we have xij kð Þ=jxij kð Þj ¼ �1, indicating

absorption and thus resulting in a negative contribution to
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the optical gain.76 For EMC simulations, the gain can be

evaluated by summing Eq. (139) over all simulated electrons

n in the corresponding states jinki of the central simulation

period(s)76

g xð Þ ¼ px
�h�0cn0SLp

X
n

X
j

xinj kð Þ
jxinj kð Þj

jdinjj2Linj x; kð Þ; (140)

where j also includes states in adjacent periods. S then corre-

sponds to the simulated device in-plane cross section, which

is for a sheet doping density per period ns given by

S ¼ Ne= nsNpð Þ, where NP corresponds to the number of peri-

ods over which the Ne simulated electrons are distributed.

For rate equations, the electron wave vector dependence

is not considered, and thus a k independent averaged value

cij has to be taken in Eq. (136). Furthermore, xij does not

depend on the wave vector if nonparabolicity effects are

neglected. Then the gain simplifies to Eq. (52), thus

becoming

g ¼ px
�h�0cn0Lp

X
i;j

jdijj2 ns
i � ns

j

� �Lij xð Þ: (141)

The intensity evolution for a mode m is again given by

Eq. (49)

n0c�1@tIm ¼ Cmg xmð ÞIm � amIm: (142)

The carrier transport and intensity evolution have to be

simulated by a coupled approach, as illustrated in Fig. 17.

The carrier transport simulation based on rate equations or

EMC now includes the photon-induced transition rates Eq.

(138), which depend on the intensities given by Eq. (142).

On the other hand, Eq. (142) depends on the gain which is

extracted from the carrier transport simulations by using Eq.

(140) or Eq. (141).

H. Selected EMC simulation results

In the following, some EMC simulation results are pre-

sented for both mid-infrared and terahertz QCLs, illustrating

the versatility of this approach. Examples without inclusion

of the optical cavity field are shown in Secs. VI A–VI D, see

Figs. 11, 13, and 15 where results for the unsaturated optical

gain are displayed. Here, we focus on coupled simulations of

the carrier transport and the optical cavity field.

The EMC method has been applied to study the optical

power and gain saturation in terahertz QCLs, yielding good

agreement with experimental data.76 Here, examples are pre-

sented for a high temperature QCL lasing up to 164 K.178

In Fig. 18, the simulated unsaturated spectral gain curve is

compared to the result obtained for carrier-light coupling

included, demonstrating gain saturation and clamping at the

threshold gain value due to the lasing field. In Fig. 19, the

obtained optical output power as a function of lattice temper-

ature is compared to experimental data, demonstrating good

agreement with experiment.

Due to the stimulated optical transitions, the lasing field

significantly influences the carrier transport, affecting not

only the subband populations and thus the optical gain but

also the electric current. This is especially the case for high

efficiency mid-infrared QCLs. In Fig. 20, the measured cur-

rent density of a mid-infrared QCL with 	50% wall-plug ef-

ficiency9 is compared to EMC results with and without

FIG. 17. Illustration of coupled simulations including both the carrier trans-

port and optical cavity field.

FIG. 18. Simulated unsaturated and saturated power gain coefficient vs. fre-

quency. The dashed line indicates the threshold gain. Reprinted with permis-

sion from Appl. Phys. Lett. 96, 011103 (2010). Copyright 2010 AIP

Publishing LLC.76

FIG. 19. Comparison of the measured optical power vs. lattice tempera-

ture178 to EMC simulation results; the inset contains the simulated power vs.

applied bias for various lattice temperatures. Reprinted with permission

from Appl. Phys. Lett. 96, 011103 (2010). Copyright 2010 AIP Publishing

LLC.76
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carrier-light coupling included.106 Good agreement with

experiment is only obtained in the former case, while the

simulation neglecting photon-induced processes significantly

underestimates the current density, demonstrating the signifi-

cant influence of these processes on the carrier transport.

VII. DENSITY MATRIX APPROACHES

The one-dimensional density matrix approach is fre-

quently used for the analysis and optimization of

QCLs.17,111–113 Also three-dimensional versions have been

developed.114,115 One-dimensional density matrix approaches

can be seen as a quantum mechanical generalization of rate

equations, Eq. (36), to include effects such as resonant tunnel-

ing and dephasing. In the semiclassical description, transport

through a barrier occurs instantaneously due to electrons

being scattered into wave functions which are spatially

extended across the barrier,125 see Fig. 21(a). In the quantum

mechanical picture, the electron transport across the barrier is

described by a coherent superposition of the extended states

with a narrow anticrossing energy gap DE, resulting in a

localized electron wavepacket. Due to the coherent time evo-

lution of these states, the wavepacket oscillates between the

left and right well with the so-called Rabi oscillation fre-

quency X ¼ DE=�h,125 and the corresponding tunneling time

corresponds to half the duration of an oscillation cycle,

stun ¼ p=X.111 The semiclassical picture is adequate as long

as the Rabi oscillations are not significantly dampened by

dephasing, since then the wavepacket oscillates uniformly

between the wells and the averaged population distribution

corresponds to the semiclassical description. However, for

strong dephasing with relaxation times s � stun, the wave

packet no longer oscillates. Rather, the electrons accumulate

in the left well, and the semiclassical picture of a uniform

electron distribution across the extended states is no longer

valid.125 Now the current transport is not limited by the

scattering-induced electron transport, but by tunneling

through the barrier. This effect is commonly referred to as

wave function localization due to dephasing, and occurs for

thick barriers with narrow anticrossing gaps DE and thus long

tunneling times stun.125 Especially in terahertz QCLs, thick

injection barriers are used with DE 	 1 meV,125 correspond-

ing to stun of around 2 ps, while the dephasing time can be

estimated from the spontaneous emission linewidth of

�5 meV (Ref. 125) to be 	0.3 ps.

Rather than describing localized wavepackets by a coher-

ent superposition of eigenstates, frequently localized wave

functions are used,111–113 see Fig. 21(b). Here, the wave func-

tions are computed for each QCL period separately, by

FIG. 20. The measured current-voltage characteristics for a high-efficiency

mid-infrared QCL9 is compared to results obtained from EMC simulations

with and without lasing included. Reprinted with permission from J. Appl.

Phys. 110, 013108 (2011). Copyright 2011 AIP Publishing LLC.106

FIG. 21. Conduction band pro-

file and probability densities for a

terahertz QCL, computed based

on (a) the actual potential V mod-

eled as a periodic sequence of

stages and (b) the tight-binding

conduction band profile Vtb

obtained by extending the bar-

riers at the stage boundaries to

confine the wavefunctions within

the stage. The rectangles denote

a single stage. The extended

wavefunctions spanning the thick

barrier and the corresponding

localized wavefunctions are

marked by bold lines.
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assuming that the thick injection barriers at the left and right

sides of the period are infinitely thick.111 The Schr€odinger

equation, Eq. (4), is then solved for the corresponding tight-

binding conduction band profile Vtb rather than the actual

potential V. The corresponding Hamiltonian is obtained in the

framework of tight-binding theory.36 Specifically, the Rabi

frequency for a doublet of states spanning the coupling barrier

is given by Xij ¼ �h�1hijV � Vtbjji.111 Depending on the

investigated QCL structure, resonant tunneling may have to

be considered at more than a single coupling barrier in each

period.112,113 Then the period is subdivided into smaller

regions, and the tight binding formalism has to be applied

accordingly.

Wave functions wi represent pure states, and thus are

not adequate for describing decoherence effects due to the

interaction with the environment. This can be accomplished

by means of a density matrix qij (see also Sec. V B), which

can represent both pure and mixed states and thus is suitable

to model dephasing. The diagonal terms qii correspond to the

occupation of level i, and the off-diagonal elements qij are

the coherence or polarization terms for the doublet i, j.125

The density matrix can be normalized so that the diagonal

terms correspond to the sheet density, qii ¼ ns
i . The time

evolution of the density matrix qij tð Þ is described by the von

Neumann equation

i�hdtqij ¼
X
‘

Hi‘q‘j � qi‘H‘j
� �

; (143)

where the Hamiltonian matrix elements are defined as

Hij ¼ hijĤ jji. For describing the carrier transport in QCLs,

the Hamiltonian is divided into two parts, Ĥ ¼ Ĥ0 þ Ĥ
0
.

Here, Ĥ0 describes the coherent evolution of the quantum sys-

tem due to the conduction band potential, while Ĥ
0

contains

the perturbation potentials corresponding to the various scat-

tering mechanisms and introduces dissipation to the system.

Ĥ
0
is commonly implemented in a somewhat phenomenologi-

cal manner by using transition and dephasing rates, similar as

for the rate equation approach discussed in Secs. V A and

VI E. Equation (143) can then be cast into the form111,113

dtn
s
i ¼

X
j6¼i

s�1
ji ns

j � s�1
i ns

i þ
X

j

iXij qij � qjið Þ;

dtqij ¼ iXijðns
i � ns

j Þ � iqijxij � cijqij;

(144)

where xij ¼ Ei � Ejð Þ=�h, and s�1
i ¼

P
j 6¼is

�1
ij indicates the

total inverse lifetime of level i. The scattering rates s�1
ij have

already been discussed in Secs. V A and VI E. The dephasing

rate is given by125

cij ¼ ðs�1
i þ s�1

j Þ=2þ s�1
pure;ij: (145)

Here, ðs�1
i þ s�1

j Þ=2 is the lifetime broadening contribution

[see also Eq. (137)], and s�1
pure;ij contains the pure dephasing.

The Rabi frequency Xij is nonzero only for doublets span-

ning a coupling barrier; specifically, Xii ¼ 0. In Eq. (144),

resonant tunneling is assumed to be independent of the in-

plane wave vector, and the rates s�1
ij ; cij are averaged over

the kinetic electron distribution within the subbands.111 The

stationary solution of Eq. (144) is obtained by setting dt¼ 0,

yielding113

X
j 6¼i

½s�1
ji ns

j þ Rijðns
j � ns

i Þ� � s�1
i ns

i ¼ 0; (146)

with

Rij ¼
2X2

ijc
�1
ij

1þ x2
ijc
�2
ij

: (147)

Furthermore, Eq. (38) has to be fulfilled, i.e., the total sheet

density in each period is determined by the doping sheet den-

sity ns.

Equation (144) can be solved using empirical rates, or

implemented in a self-consistent manner by calculating the

scattering rates s�1
ij as discussed in Sec. VI E. The pure

dephasing rate s�1
pure;ij in Eq. (145) can be computed based on

intrasubband scattering transitions,113,179 but is often treated

by assuming an empirical value.112,125 In a simplified model,

the transport across the barrier can be restricted to the cou-

pling between two states 1 and 2. For this case, Eq. (146)

simplifies with s�1
12 ¼ s�1

21 ¼ 0 to s�1
2 ns

2 þ R12 ns
2 � ns

1ð Þ ¼ 0.

The current density through the barrier is then given by

J ¼ eR12 ns
1 � ns

2ð Þ ¼ es�1
2 ns

2. With Eq. (147) and ns
1 þ ns

2

¼ ns, we obtain10

J ¼ 2ensX2
12c
�1
12

1þ x2
12c
�2
12 þ 4X2

12c
�1
12 s2

: (148)

In the three-dimensional density matrix method, addi-

tionally the in-plane wave vector k is taken into account, i.e.,

the electrons are described by states jiki rather than jii.
Consequently, the density matrix is given by qik;jk0 , and i; j; ‘
in Eq. (143) have to be replaced by ik; jk0, and ‘k00, respec-

tively. Three-dimensional density matrix approaches can be

seen as a quantum mechanical generalization of the

Boltzmann equation given in Eq. (129). Various approaches

based on the three-dimensional density matrix have been

developed for QCL simulation, where the scattering mecha-

nisms are self-consistently implemented based on the corre-

sponding Hamiltonians.114,115 Specifically, also a hybrid

density matrix-Monte Carlo approach has been introduced,

where the tunneling transport through the coupling barrier is

treated based on the density matrix formalism, while scatter-

ing inside each period is treated semiclassically using an

EMC approach.125

VIII. NON-EQUILIBRIUM GREEN’S FUNCTION
FORMALISM

A. General scope of the non-equilibrium
Green’s function method

Quantum cascade devices utilize charge transport in

structures of the nanometer length scale. In this regime,

quantum effects such as coherent tunneling, interference,
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and confinement play a very important role for the transport

physics. At the same time, however, the devices are run at

finite temperatures, which support a significant amount of

scattering with phonons. Since most devices are doped,

alloyed and/or based on heterojunctions of different materi-

als, impurity and alloy disorder as well as surface and

interface roughness influence the transport, too. All these

scattering effects share the fact that the full quantum

information (i.e., the full phonon phase, the precise position

of the impurities, etc.) is either unknown or lost in the statis-

tics of large numbers of scattering events. Consequently,

these effects contribute to incoherent scattering and

dephasing.

It is well established that the NEGF theory is the most

general scheme for the prediction of coherent and incoherent

quantum transport. Since its introduction in the 1960s,180–182

this formalism has been successfully applied on a great

variety of transport problems. These problems include, but

are not limited to spin,183–185 phonon,186–188 and electron

transport,189,190 covering different materials such as met-

als,191,192 semiconductors,193 topological insulators,194 and

even various dimensionalities such as layered structures,195

nanotubes,187,196 fullerenes,197 and molecules.198,199 For

electronic transport, the NEGF method has been imple-

mented in a large variety of representations, ranging from

envelope function approximations such as the effective

mass200,201 and k�p method,202 to atomistic representations

such as tight binding203,204 and even density functional

theory models.205 In most cases, the NEGF method is used

for transport in open systems, i.e., devices connected to spin,

charge or heat reservoirs via semi-infinite leads.

Nevertheless, two different approaches have been success-

fully applied to mimic the field-periodic conditions cascade

structures are facing.118,122,206,207

It is this high flexibility of NEGF that offers choosing

specialized basis functions such as, e.g., Wannier-Stark

states for cascade structures,206 wire modes for homogene-

ous wire systems,189 or generic basis functions for general

cases within the low rank approximation.208 It is true for all

these cases that the closer the basis functions match the

actual quasi particles of the system, the fewer basis functions

are required to reliably predict the device performance and

the more efficient the numerical implementation of NEGF

will be. It is worth to mention here that the NEGF method

natively contains more information than semiclassical meth-

ods such as the Boltzmann equation. In fact, it has already

been shown in the 1960s how to approximate the NEGF

equations to yield the Boltzmann equation.181

The NEGF method, however, faces one major drawback

compared to most other methods: the numerical solution of

the NEGF equations is expensive both in terms of memory

and central processing unit (CPU) time. The numerical costs

are particularly high if incoherent scattering in the self-

consistent Born approximation is considered. For this reason,

most numerical implementations of NEGF on real devices

do not include electron-electron scattering beyond the first

order (Hartree) approximation. Higher orders of electron-

electron scattering (i.e., exchange terms) are required to

model energy transfer during inelastic electron-electron

scattering, but their numerical load typically prohibits the

implementation on concrete transport problems.

B. Overview of the non-equilibrium Green’s function
method

1. Fundamental equations and observables

As discussed in Sec. II A, electrons in quantum cascade

lasers can be successfully described within the effective

mass approximation. Hereby, the devices are typically con-

sidered as laterally homogeneous quantum well heterostruc-

tures. The electronic structure is then represented with the

Hamiltonian

Ĥ0 ¼
��h2

2
@z

1

m� z;Eð Þ @z þ
�h2k2

2mk z;Eð Þ
þ V zð Þ;

V zð Þ ¼ Vc zð Þ � eU zð Þ;
(149)

where k is the lateral electron momentum, U zð Þ the electro-

static potential, and Vc zð Þ denotes the material and position

dependent conduction band edge, including the band offsets.

Note that the effective mass is energy-dependent to include

the nonparabolicity as described in detail in Sec. II C. In the

stationary limit, the NEGF method describes transport with

the electronic retarded and lesser Green’s function GR and

G<, respectively. These functions solve four coupled partial

differential equations that read in operator form for a given

energy E and in-plane momentum k209

GR ¼ E1̂ � Ĥ0 � RR
� ��1

; (150a)

G< ¼ GRR<GR†

; (150b)

R< ¼ G<D<; (150c)

RR ¼ GRDR þ GRD< þ G<DR: (150d)

Here, RR and R< denote the retarded and lesser self-energies

and DR and D< are the sum of retarded and lesser Green’s

function of the environment. Equations (150a) and (150b)

are also referred to as Dyson and Keldysh equation, respec-

tively. The expressions for the self-energies, Eqs. (150c) and

(150d), are discussed in Sec. VIII D for various scattering

mechanisms. We note that in that section and in the rest of

this paper all Green’s functions and self-energies are given

in real space representation which requires a transformation

of Eqs. (150) from operator space into real space. Thus, the

Green’s functions and self-energies given in the following

have the dimensions eV�1 m�1 and eV m�1, respectively,

unless stated otherwise. Green’s functions and self-energies

are solved in the self-consistent Born approximation, i.e.,

they are solved iteratively until convergence is achieved.

Most of the known current conserving simplifications of the

self-energies do not ease the convergence of the

self-consistent Born iterations, but reduce the numerical bur-

den of each individual iteration only. In contrast to methods

that require the solution of the Schr€odinger equation, the sol-

utions of Eqs. (150) do not require to solve an eigenvalue
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problem. Consequently, energy dependent effective masses

in the Hamiltonian Ĥ0 do not increase the numerical com-

plexity of NEGF. The Green’s functions and self-energies

are functions of two spatial coordinates z; z0, the absolute

value of the lateral momentum k and the energy E. The

energy and spatially resolved spectral function A z;Eð Þ ¼
i½GR z; z; 0;Eð Þ �GR†

z; z; 0;Eð Þ� shows width and location of

resonant states in the system. This indicates that GR contains

the information of resonant states and the density of states.

The G< function contains in addition information of the oc-

cupancy of the electronic states. Consequently, occupancy

related observables such as density, current, and optical gain

are dependent on G<: the spatially and energy-resolved den-

sity n z;Eð Þ and current density J z;Eð Þ are defined in relation

to the density n zð Þ and current density J zð Þ, respectively,

n zð Þ ¼
ð

dEn z;Eð Þ

¼ 2

2pð Þ3
=
ð

dE

ð
d2kG< z; z; k;Eð Þ; (151)

J zð Þ ¼
ð

dEJ z;Eð Þ

¼ � �he

2pð Þ3
lim
z0!z

ð
dE

ð
d2k

1

m� z;Eð Þ

 < @z � @z0ð ÞG< z; z0; k;Eð Þ: (152)

The current density in Eq. (152) is only correct as long as the

kinetic energy operator is the only term in the Hamiltonian

that does not commute with the position operator. This can

be seen from the fundamental probability current density op-

erator in real space x and time t representation (see, e.g.,

Refs. 210 and 211)

hĴ x1; t1ð Þi ¼ lim
t2!t1

lim
x2!x1

i�hv̂G< x1; t1; x2; t2ð Þ; (153)

with the velocity operator

v̂ ¼ i

�h
Ĥ ; x̂
	 


�: (154)

Please note that the Green’s function in Eq. (153) is given in

real space x and time t representation and has the dimension

eV�1 m�3 s�1. The optical field amplitude absorption coeffi-

cient a z;xð Þ for a photon of frequency x is a function of the

permittivity � z;xð Þ212

a z;xð Þ ¼ =
� z;xð Þ
�0

� � ffiffiffi
2
p

x
c

<
� z;xð Þ
�0

� �
þ
���� � z;xð Þ

�0

����
( )�1=2

:

(155)

Here, �0 is the vaccum permittivity and c denotes the speed of

light. The optical absorption coefficient is usually defined with

respect to the field intensity (a) rather than with respect to the

field amplitude,88 see Sec. III. In particular, in the gain regime

one often refers to the power gain �a. These quantities are

related by a ¼ 2a. The permittivity depends on the complex

conductance r z;xð Þ and the materials dielectric constant �r zð Þ

� z;xð Þ ¼ �0�r zð Þ þ ir z;xð Þ=x: (156)

Before lasing starts and the perturbation dV̂ xð Þ due to the

optical field is still small, the optical absorption can be

extracted from the linear response of the Green’s functions.

To first order, the change of the lesser Green’s function is

given by (for a given k)116

dG< x;Eð Þ ¼ GR Eþ �hxð ÞdV̂ xð ÞG< Eð Þ

þG< Eþ �hxð ÞdV̂ xð ÞGR†

Eð Þ
þGR Eþ �hxð ÞdRR Eþ �hx;�Eð ÞG< Eð Þ

þG< Eþ �hxð ÞdRR†

Eþ �hx;�Eð ÞGR†

Eð Þ

þGR Eþ �hxð ÞdR< Eþ �hx;�Eð ÞGR†

Eð Þ:
(157)

Changes to the scattering self-energies dR due to the pho-

tonic perturbation dV̂ are first order vertex corrections.

The wavelengths of terahertz lasers are much larger than

the typical dimensions of the QCL periods. Thus, for the

electron transport calculation, the optical electric field can be

considered constant in the active device. Since the QCL laser

light is usually linearly polarized in transport direction z, the

perturbing potential reads in Coulomb gauge

dV̂ xð Þ ¼ �he

m� zð Þx
Ez xð Þ@z; (158)

with the photon electric field component in z direction Ez.

This results in the change of the current density dJ z;xð Þ in

linear order of dV̂ xð Þ

dJ z1;xð Þ ¼ � lim
z2!z1

�h2e

m� z1ð Þ
@z1
� @z2ð Þ



ð

dE

2p�h

ð
d2k

2pð Þ2
dG< z1; z2; k;x;Eð Þ

� 2�he2Ez xð Þ
m� z1ð Þx

ð
dE

2p�h

ð
d2k

2pð Þ2
G< z1; z1; k;Eð Þ:

(159)

The first term of the last equation results from the current op-

erator in Eq. (152) applied on the change of the lesser

Green’s functions dG<. The second term results from the

change of the velocity and of the current operator due to the

fact that dV̂ xð Þ does not commute with the position operator

[see Eq. (154)]. The quotient of the perturbation of the cur-

rent density dJ z;xð Þ and the electric field Ez xð Þ of the pho-

ton gives us the optical conductance

r z;xð Þ ¼
dJ z;xð Þ
Ez xð Þ : (160)

If vertex corrections dR are ignored for simplicity, Eqs.

(158), (157), and (159) can be combined into an equation for

the optical conductance
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r z1;xð Þ ¼ lim
z2!z1

�h2e2

m� z1ð Þ2 2pð Þ3x
@z1
� @z2ð Þ

ð
dEd2kdz3


 ½GR z1; z3; k;Eþ �hxð Þ@z0G
< z0; z2; k;Eð Þjz0¼z3

þG< z1; z3; k;Eþ �hxð Þ@z0G
A z0; z2; k;Eð Þjz0¼z3

�

�2e2

ð
dEd2k

2pð Þ3m� z1ð Þx
G< z1; z1; k;Eð Þ: (161)

When the self-consistently solved Green’s functions are used

for the optical conductance, Eq. (161) fully accounts for the

self-consistently calculated electron states and their non-

equilibrium state occupations. The vertex corrections dR in

Eq. (157) increase the numerical load significantly, since

they require self-consistent iterations of dG with dR. Both

dG and dR depend on the optical frequency x in addition to

the “standard” dependence of the Green’s function [e.g.,

dR ¼ dR z; z0; k;E;xð Þ]. Thus, such self-consistency is ex-

pensive in terms of memory and time. It has been shown that

vertex corrections narrow the optical linewidths and increase

the peak height of the absorption coefficient in terahertz

QCLs.117 Calculations without dR may not predict quantita-

tive values of a z;xð Þ, but can serve for qualitative predic-

tions only. If the interaction with the photonic field should

be considered beyond linear response—such as in the case of

electron transport during lasing, time dependent NEGF with

a periodically oscillating electric field is required. Details of

this approach can be found in Ref. 124.

The balance between the benefits of the NEGF method

and its numerical load is strongly device physics dependent.

If the electron transport is clearly dominated by incoherent

scattering and tunneling across multiple barriers is negligi-

ble, semiclassical models are clearly more efficient than

NEGF. Otherwise, if scattering is negligible, the NEGF

method has to compete with numerically more efficient

methods such as the Schr€odinger equation or the quantum

transmitting boundary method.213 If scattering in low order

captures the physics and energy resolved information is not

desired, the density matrix method is more efficient than

NEGF as well. The strength of NEGF is that it allows to pre-

dict transport in all these regimes and gives deep insight to

the ongoing processes in any of the before mentioned situa-

tions. It will be discussed in Sec. VIII E in detail that a single

terahertz QCL can move from the ballistic to the scattering

dominated regime with the applied electric field. Therefore,

it is appropriate to use NEGF on these devices.

2. Different basis representations and low rank
approximations

The solution of the NEGF equations, Eqs. (150),

requires many matrix-matrix products and matrix inversions.

Both scale cubically with N, the number of degrees of free-

dom the equations are discretized in. As a result, highly

resolved NEGF calculations can easily require modern

supercomputers.44 It is obvious that any reduction of N will

reduce the number of floating point operations signfi-

cantly.208 Real space discretization of Eqs. (150) faces the

challenge that any device feature such as differing widths of

semiconductor layers has to match to the chosen resolution.

Particularly small device features require an inhomogeneous

grid in real space, increasing the numerical complexity.

The most common technique to reduce N is to transform

the NEGF equations into a system of basis functions that are

equal or close to the actual propagating eigenstates of the

system’s Hamiltonian. The more the basis functions agree

with the eigenfunctions of the system, the less the basis func-

tions couple with each other and the fewer functions need to

be included in the actual transport calculation. If the target

basis has less states than the rank N of the original (real

space) representation, the transformation matrices are rectan-

gular. In the ideal case, when the basis functions are isolated

from each other, their individual contribution to transport

can be solved and summed. Prominent examples of such

rank reductions are the mode space approaches for transport

in nanowire structures. If the basis functions are coupled, it

is common to still limit the number of considered functions.

In this case, however, this approach gives only approximate

results. In general cases, transformations with rectangular

matrices that reduce the rank of the equations are called low

rank approximations.208

In the framework of cascade devices, a small number N
of Wannier or Wannier-Stark basis functions have proven to

represent quantum transport well enough for reliable predic-

tions. For instance, Lee et al. were able to solve the IV char-

acteristics and optical output performance of terahertz QCLs

with only 5 states per period.214 Although it is a common

and numerically very efficient technique, caution is required

when results of the low rank space are transformed back into

the original real space representation if the rank of the two

differs a lot. Numerically, the back transformation produces

results with the high resolution of the original space, but the

reliability of the data in the real space resolution strongly

depends on how well the basis functions of the low rank

space match the physics of the device. Unphysical oscilla-

tions of the current density with real space can indicate such

reliability issues. Increasing the number of considered basis

functions in the low rank space can improve the reliability of

the approximate results.208,214

C. Boundary conditions for cascade systems

Boundary conditions in stationary NEGF always fall

into two categories: boundary conditions for GR that are

related to the density of states and boundary conditions for

G< that are related to state occupancy and particle distribu-

tions. Since quantum cascade lasers consist of many repeti-

tions of the same building block—a sequence of quantum

wells and barriers—NEGF is often applied on cascade struc-

tures with field periodic boundary conditions.121,206,215 Field

periodic boundary conditions for the retarded Green’s func-

tion can be mimicked by solving the NEGF equations in a

system of 3 or more periods: the innermost period is consid-

ered as the actual active device while the boundary periods

are considered as charge suppliers only. The Poisson equa-

tion is solved with periodic boundary condition and an

applied homogeneous electric field is added to the resulting

potential. Since the source sided periods are on average on a
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higher potential (and contrary for the drain sided periods),

the system effectively faces field periodic charge boundary

conditions. The initial guess for the lesser Green’s function

G< is also field periodic. Since the system is closed,

self-consistent Born iterations of the higher order scattering

terms may change the number of electrons. To maintain

global charge neutrality, the G< function needs rescaling

between iterations.215 Although this type of boundary treat-

ment is appealing for cascade systems, care on the numerical

details has to be taken: In the first iteration of the

self-consistent Born approximation the system is purely

coherent. Then, the equation for GR is van-Hove singular

whenever the energy E agrees with a resonance of the sys-

tem. Otherwise, the resulting retarded Green’s function is

real and the spectral function A vanishes (i.e., no electronic

states are found). To solve this issue, a small artificial re-

tarded scattering self-energy is typically included in Eqs.

(150). This self-energy maintains a minimal broadening of

resonances. This artificial broadening has to be negligible

compared to the actual scattering self-energies. Note that

purely coherent and field periodic calculations would clearly

yield divergent electron energies in nonequilibrium.

Most applications of NEGF tackle transport in open sys-

tems. In open systems, the active device is connected via

semi-infinite leads with charge reservoirs that supply or col-

lect electrons with a constant, typically equilibrium distribu-

tion. Technically, the boundary conditions of GR and G< are

then introduced by including contact self-energies RR
con and

R<
con in the equations for GR and G< in Eqs. (150), respec-

tively. In this case, the large number of cascade periods can

be mimicked by considering one or a few periods as the

actual active device and including the potential landscape

and material sequences of the adjacent periods in the calcula-

tion of RR.118,122 In this way, the presence of the leads broad-

ens resonant states in the active device and allows for the

solution of purely ballistic transport without adding artificial

retarded self-energies. It also allows for the assessment of

individual scattering mechanisms, since scattering and its

broadening of the states is not essential for numerical con-

vergence and can be turned off selectively. However, the

boundary condition for G< requires a model for the electron

distribution in the leads. It is common in NEGF for open sys-

tems to assume equilibrium Fermi distributions. In the case

of cascade devices, however, such equilibrium distributions

do not include possible heating effects within previous cas-

cade periods and therefore allow results of nonperiodic elec-

tron distributions: When heating effects exist, the electrons

do not dissipate all energy they gain while traversing the

potential drop of a single period. Then, the electron distribu-

tions at source and drain side of each period differ.118

Alternatively, an electron distribution can be read out of

G< at device positions that are equivalent to the lead/device

interfaces. In this case, the nonequilibrium distribution is

defined as

f z; k;Eð Þ 
 �iG< z; z; k;Eð Þ=A z; z; k;Eð Þ; (162)

with the spectral function

A z; z0; k;Eð Þ ¼ i GR z; z0; k;Eð Þ � GR†

z; z0; k;Eð Þ
h i

: (163)

In equilibrium, the function f z; k;Eð Þ equals the Fermi distri-

bution f E; lð Þ.209 When the distribution function of source

(z¼ 0) and drain (z¼ L) are assumed to be equivalent to the

distribution functions at positions in the device that are a sin-

gle QCL period apart

f 0;k;Eð Þ¼! f nLp;k;Eþne/
� �

;

f L;k;Eð Þ¼! f L�nLp;k;E�ne/
� �

;

field periodic boundary conditions for G< are mimicked.122

Here, Lp is the length of a QCL period, / is the potential drop

per period, and n is the number of explicitly considered QCL

periods. To ensure global charge neutrality, the Poisson equa-

tion is solved with the applied electric field at both boundaries.

D. Scattering self-energies

In the following, the resulting expressions for the self-

energies, given in Eqs. (150c) and (150d), are summarized for

the most important scattering mechanisms in QCLs. If multi-

ple scattering mechanisms are considered, the individual self-

energies of the respective scattering mechanisms can be

summed up and the summed self-energy is then used in Eqs.

(150). Some of the scattering self-energies are numerically so

expensive to implement that approximations are inevitable.

Some approximations are shown that ease the numerical bur-

den significantly but still faithfully reproduce the scattering

rates expected from Fermi’s golden rule. It is worth mention-

ing that all presented approximations have been carefully

assessed. Approximations that violate Pauli blocking, underes-

timate effects of nonlocality of quantum mechanics or miss

important characteristics of the scattering potentials have been

avoided. Coherent effects or the balance between incoherent

and coherent QCL physics are to the best of the authors’

knowledge not affected by the presented approximations. A

detailed discussion of the validity of approximations in NEGF

can be found in Ref. 120. This section ends with a brief discus-

sion on general approximations of scattering self-energies and

some numerical details for efficient implementations.

1. Scattering from longitudinal acoustic phonons

To avoid many-particle Green’s functions, the phonon

gas is assumed to remain unchanged by the electron propaga-

tion. This requires applying the perturbation potential of Eq.

(66) in second order and to group the phonon creation with

annihilation operators.216 The resulting products of phonon

and electron operators are then translated into the electron

and phonon Green’s functions in Eq. (150) for the lesser and

retarded self-energies195,209,211

R< z3; z4; k;Eð Þ ¼ 1

2pð Þ3
ð

d2qdqzjCQj2eiqz z3�z4ð Þ


 ½NQG< z3; z4; jk� qj;E� �hxQ

� �
þ 1þ NQð ÞG< z3; z4; jk� qj;Eþ �hxQ

� �
�;

(164)
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RR z3; z4; k;Eð Þ ¼ 1

2pð Þ3
ð

d2qdqzjCQj2eiqz z3�z4ð Þ


 ½NQGR z3; z4; jk� qj;Eþ �hxQ

� �
þ 1þ NQð ÞGR z3; z4; jk� qj;E� �hxQ

� �
�

þ 1

2pð Þ3
ð

d2qdqzjCQj2eiqz z3�z4ð Þ



�

1

2
G< z3; z4; jk� qj;E� �hxQ

� �
� 1

2
G< z3; z4; jk� qj;Eþ �hxQ

� ��

� i

2pð Þ4
ð

dE0
ð

d2qdqzjCQj2eiqz z3�z4ð Þ


 G< z3; z4; jk� qj;E� E0
� �


 Pr
1

E0 þ �hxQ

� 1

E0 � �hxQ

� �
: (165)

Here, Q ¼ q; qz½ �T is the phonon wave vector with the in-

plane component q, and Q ¼ jQj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ q2

z

p
. The coupling

constant for a phonon of wave vector Q and phonon fre-

quency xQ is denoted with CQ, and the analytical phonon

Green’s functions are already inserted.216 It is worth noting

that Eqs. (164) and (165) are valid for electrons scattering

from any type of bulk equilibrium phonons. In the case of

the deformation potential perturbation and a linearized pho-

non dispersion relation,149 the coupling constant reads [simi-

lar to Eq. (67)]

jCQj2 ¼
�hN2

2qcxQ

Q2: (166)

Even in this approximate shape, Eqs. (164) and (165) require

numerical solution of the three-dimensional Q integrals.

Since that is typically beyond numerical feasibility, further

approximations are commonly applied.

a. Elastic acoustic phonon scattering. A rather common

approach165,217 is to neglect energy changes of the electrons

in the scattering process with the phonons

E 6 �hxQ 	 E: (167)

In addition, high temperatures are assumed218

kBT � �hxQ; (168)

which allows to apply the equipartition approximation to the

Bose distribution (see also Sec. VI B 1)

NQ þ 1 	 NQ 	
kBT

�hxQ

¼ kBT

�hvsQ
: (169)

The lower the phonon energy, the better justified the

equipartition approximation. In the case of GaAs the acoustic

phonon energy extends up to approximately 19 meV. At this

phonon energy, the equipartition approximation is well justi-

fied for phonon bath temperatures above approximately

30 K, as illustrated in Fig. 22. This figure shows the exact

(solid) as well as the approximated [Eq. (169), dashed] result

of 1þ 2NQð Þ at 19 meV.

With all these approximations the formula for the lesser

self-energy finally reads

R< z3; z4; k;Eð Þ ¼ 1

2pð Þ3
kBTN2

qcv2
s



ð

d2qdqze
iqz z3�z4ð ÞG< z3; z4; jk� qj;Eð Þ:

(170)

When the integral over qz is approximated141 to run from

�1 to 1 it can be solved analytically which results in a

local scattering self-energy

R< z3; z4; k;Eð Þ ¼ 1

2pð Þ2
kBTN2

qcv2
s

d z3 � z4ð Þ
ð

d2lG< z3; z4; l;Eð Þ:

(171)

This scattering self-energy describes elastic scattering proc-

esses. Therefore, terms involving the lesser Green’s function

in the formula of the retarded self-energy Eq. (165) vanish

exactly and the retarded self-energy can be obtained from

Eq. (171) by replacing the “<” with “R”.

b. Inelastic acoustic phonon scattering. An elastic

approximation of the scattering with acoustic phonons

misses an important physical effect: Inelastic scattering with

acoustic phonons allows dissipation of arbitrarily small

amounts of energy. In particular, when the electronic energy

is insufficient to emit polar optical phonons, such an elastic

treatment of acoustic phonons may underestimate electron

thermalization. Setting the energy of acoustic phonons to a

constant, but finite value still limits the minimum amount of

dissipated energy.206 Such small amounts of dissipated

energy become important when the electrons do not carry

enough energy to dissipate polar optical phonons. A full ther-

malization of such electrons requires the possibility to dissi-

pate arbitrarily small amounts of energy.

FIG. 22. Phonon-number-dependent prefactor in the integral of Eqs. (164)

and (165) at 19 meV phonon energy as a function of the bath temperature.

The high temperature approximation described in the text (dashed) con-

verges to the exact solution (solid) at approximately 30 K. The lower the

phonon energy, the faster both curves converge.
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A simple approximate inclusion of inelasticity is to

replace the Green’s function in Eq. (171) with an approxi-

mate Green’s function ~G, averaged over the energy range of

61 acoustic phonon

~G
<;R

z3; z4; l; ~E
� �

¼ 1

2�hxD

ðEþ�hxD

E��hxD

dE0G<;R z3; z4; l;E
0ð Þ;

8 ~E 2 E� �hxD;Eþ �hxD½ �: (172)

Hereby, the Debye frequency

xD ¼
3qN

4p

� �1=3

vs; (173)

with the number density qN limits the width of that average.

In connection with the equipartition approximation

of Subsection VIII D 1 a, the numerical benefit from this

approximation is threefold. First, the qz integral in Eq. (164)

can be solved analytically and yields a local scattering self-

energy similar to Eq. (171)

R< z3; z4; k;Eð Þ ¼ 1

2pð Þ2
N2kBT

qcv2
s 2�hxD

d z3 � z4ð Þ



ðEþ�hxD

E��hxD

dE0
ð

d2lG< z3; z4; l;E
0ð Þ: (174)

Second, scattering with acoustic phonons is inelastically

implemented and allows dissipation of arbitrarily small ener-

gies. Third, all terms containing G< in Eq. (165) vanish

exactly and the retarded self-energy is independent of the

lesser Green’s functions

RR z3; z4; k;Eð Þ ¼ 1

2pð Þ2
N2kBT

qcv2
s 2�hxD

d z3 � z4ð Þ



ðEþ�hxD

E��hxD

dE0
ð

d2lGR z3; z4; l;E
0ð Þ: (175)

If all RR are independent of G<, the retarded functions can

be solved in advance of the lesser Green’s functions and

self-energies. Once the retarded self-energy of a homogene-

ous system in equilibrium is known, the bulk, on-shell scat-

tering rate can be extracted: In homogeneous systems, the

self-energies depend only on the difference of the propaga-

tion coordinates (r¼ z3 – z4). A Fourier transform of the

imaginary part of the retarded self-energy with respect to r
agrees then with the scattering rate195

~C k; kz;Eð Þ ¼ � 2

�h
=
ð

drexp ikzrð ÞRR r; k;Eð Þ: (176)

If ~C is evaluated at

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� Eð ÞE=�h2 � k2m� Eð Þ=mk Eð Þ

q
; (177)

it agrees with the on-shell scattering rate of bulk electrons

with energy

E ¼ �h2

2

k2

mk Eð Þ þ
k2

z

m� Eð Þ

" #
: (178)

Figure 23 shows that scattering rate for the self-energy Eq.

(175). It nicely reproduces the on-shell scattering rate of

Fermi’s golden rule.

In spite of the scattering rate, the presented approxima-

tions of inelastic longitudinal acoustic phonons lead to an

incorrect electron distribution: It can be shown that any pho-

non distribution that deviates from the Bose distribution

[such as the approximate one of Eq. (169)] will cause the

equilibrium electron distribution to deviate from the Fermi

distribution.219 This is illustrated in Fig. 24 as it shows the

electronic occupation of the first state of an unbiased 10 nm

wide In.0165Ga.9835As quantum well that is surrounded by

10 nm thick GaAs layers at various temperatures. In this cal-

culation, only scattering on acoustic phonons given by Eqs.

(174) and (175) is included. The zero of energy is set to the

chemical potential of the device and energies below the con-

duction band edge are neglected. The higher the device tem-

perature, the better is the agreement between the high-energy

tail and the Fermi distribution. However, the occupations at

FIG. 23. On-shell scattering rate of electrons by longitudinal acoustic pho-

nons in bulk n-doped GaAs at 300 K and n¼ 2
 1018 cm�3. The Fermi

golden rule (dotted) and the NEGF calculation (full line) match perfectly.

FIG. 24. In-plane electron distribution in the first state of a 10 nm wide

In.0165Ga.9835As quantum well at equilibrium and various temperatures. The

dashed lines show occupations resulting from NEGF calculations when the

approximate inelastic scattering with LA-phonons of Eqs. (174) and (175) is

the only included incoherent scattering mechanism. The Fermi distributions

are depicted with solid lines. The zero in energy marks the chemical

potential.
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energies below the chemical potential are underestimated at

any temperature.

Apart from these deviations from the Fermi distribution,

Eqs. (174) and (175) are numerically efficient and describe

the probability for inelastic scattering with acoustic phonons

well enough. As soon as another inelastic scattering mecha-

nism is included that is significantly stronger than the acous-

tic phonon scattering, such deviations from the Fermi

distribution become negligible.

2. Scattering from polar longitudinal optical phonons

The scattering of electrons from polar optical phonons is

discussed in detail in Sec. VI B 2. With the screened polar

optical scattering potential of Eq. (85) the lesser self-energy

reads similar to Eq. (86)

R< z3; z4; k;Eð Þ

¼ cp

2pð Þ3
ð

d2l
e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�lj2þq2

s

p
jz3�z4jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jk� lj2 þ q2
s

q


 1� q2
s jz3 � z4j

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk� lj2 þ q2

s

q � q2
s

2 jk� lj2 þ q2
s

� �
2
4

3
5


 ½NPhG< z3; z4; l;E� ELOð Þ
þ 1þ NPhð ÞG< z3; z4; l;Eþ ELOð Þ�; (179)

with the LO phonon energy ELO ¼ �hxLO, phonon occupation

number NPh given in Eq. (71), and

c ¼ e2 ELO

2�0

1

�r;1
� 1

�r;0

� �
: (180)

Analogously, the formula for the retarded self-energy can be

derived to

RR z3; z4; k;Eð Þ

¼ cp

2pð Þ3
ð

d2l
e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk�lj2þq2

s

p
jz3�z4jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jk� lj2 þ q2
s

q


 1� q2
s jz3 � z4j

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk� lj2 þ q2

s

q � q2
s

2 jk� lj2 þ q2
s

� �
2
4

3
5



�

1þ NPhð ÞGR z3; z4; l;E� ELOð Þ

þNPhGR z3; z4; l;Eþ ELOð Þ þ 1

2
G< z3; z4; l;E� ELOð Þ

� 1

2
G< z3; z4; l;Eþ ELOð Þ þ i

ð
d ~E

2p
G< z3; z4; l; ~E
� �


 Pr
1

E� ~E � ELO

� Pr
1

E� ~E þ ELO

� ��
: (181)

Svizhenko and Anantram have shown in one-dimensional

systems that the principal value integrals of the last line in

Eq. (181) shift the energies of resonant states.220 When that

shift is not differing significantly between different confined

states, it leads only to a rigorous shift of the current-voltage

characteristics. Therefore and since the principal value inte-

grals are numerically expensive to solve, these principal

value integrals are often neglected.165,206,215 The on-shell

scattering rate that corresponds to Eq. (181) is illustrated in

Fig. 25. It shows results for a homogeneously n-doped GaAs

device with n¼ 2
 1018 cm�3. It is worth emphasizing that

the self-energies of the polar optical phonon scattering are fi-

nite when the two propagation coordinates z3 and z4 differ.

This nonlocality of the scattering originates from the

long-range nature of the Coulomb potential. Screening can

efficiently limit this effect as can be seen from the exponents

in Eqs. (179) and (181).

In Fig. 25, NEGF is solved in equilibrium at room tem-

perature while only scattering with polar optical phonons is

included. The black line in Fig. 25 shows the scattering rate

C resulting from Eq. (176) while the gray line shows results

of Fermi’s golden rule (see, e.g., Ref. 218). Due to the high

electron density, the chemical potential lies at approximately

90 meV above the conduction band edge (at 0 meV). In this

case, holes in the conduction band at energies lower than the

chemical potential contribute to the total scattering rate.120

Therefore, the Fermi golden rule result is a sum of scattering

probabilities of four kinds of scattering events: emission and

absorption of LO-phonons by electrons and holes in the con-

duction band. When present, all these scattering mechanisms

are automatically included in the self-energy of Eq. (181).

3. Brooks-Herring scattering on charged impurities

It has been discussed already in Sec. VI D 1 that for elec-

trons scattering from charged impurities, the perturbing

potential Vimp x; s1; s2;…; sNð Þ at position x is created by the

N impurities at the position s1;…; sN . In this section, more

details on the perturbation of Green’s functions due to impu-

rity scattering are presented. It is particularly relevant since

the NEGF formulation of impurity scattering differs from the

semiclassical picture in Sec. VI D 1: the scattering on charged

impurities may influence the electronic correlation function

FIG. 25. On-shell scattering rate of electrons with screened polar optical

phonons in homogeneous n-doped GaAs at 300 K. The doping concentration

is 2
 1018 cm�3 and the screening length is set to 5 nm for comparison.

Results of NEGF calculations (black) agree nicely with Fermi’s golden rule

(grey). The scattering rate below the chemical potential at approximately

90 meV originates mainly from the scattering of conduction band holes.
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between distinct positions. This is also true for scattering on

polar optical phonons in Eqs. (179) and (181), but the follow-

ing derivation illustrates nicely this effect. If the impurities

are randomly distributed, the probability density to find an

impurity at position si is given by

P sið Þ ¼
nD sið Þ

N
: (182)

Here, the total number of impurities N is given by the inte-

gral of the impurity density over the total volume Vð
V

nD sð Þd3s ¼ N: (183)

As discussed in Sec. VI D 1, the first order of the impurity

scattering is covered by the Poisson equation. For the second

order, the squared scattering potential is required. The actual

distribution of the impurities is unknown, thus the product of

the perturbing potential has to be averaged over the impurity

positions which introduces the impurity potential autocorre-

lation function

hVimp x3; s1; s2;…; sNð ÞVimp x4; s1; s2;…; sNð Þiimp

¼ 1

NN

ðYN
i¼1

d3sinD sið Þ
1

2pð Þ6



ð

d3Qd3Q0Vimp Qð ÞVimp Q0ð Þ
XN

j¼1

eiQ� x3�sjð ÞeiQ0 � x4�sjð Þ:

(184)

With some algebra, this simplifies to

hVimp x3; s1; s2;…; sNð ÞVimp x4; s1; s2;…; sNð Þiimp

¼ 1

2pð Þ6
ð

d3sd3Qd3Q0nD sð ÞVimp Qð Þ


 Vimp Q0ð Þe�i QþQ0ð Þ�seiQ�x3 eiQ0�x4 : (185)

Typical cascade lasers are set in the regime of the

approach of Brooks and Herring (see discussion in Sec.

VI D 1)158

Vimp Qð Þ ¼ e2

�

1

Q2 þ q2
s

; (186)

with the inverse Debye screening length qs. In these systems,

the doping profile is independent of in-plane positions

½nD sð Þ ¼ nD zð Þ� and the impurity potential correlation Eq.

(185) can be simplified further

hVimp x3; s1; s2;…; sNð ÞVimp x4; s1; s2;…; sNð Þiimp

¼ 1

2pð Þ2
ð

dzd3QnD zð ÞeiQ� x3�x4ð Þ


 Vimp Q; z3 � zð ÞVimp �Q; z4 � zð Þ: (187)

The two-dimensional Fourier transform of the Debye-H€uckel

potential with respect to the in-plane coordinates reads165

Vimp q; rzð Þ ¼
e2

2�

expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

s þ q2
p

jrzjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

s þ q2
p : (188)

In 3D real space representation, the elastic charged impurity

scattering self-energy is a product of the electronic Green’s

function with the scattering potential correlation. After the

Fourier transform with respect to the in-plane momentum the

scattering self-energies read165

R<;R
imp z3; z4; k;Eð Þ ¼ e4

16p2�2



ð

d2qF z3; z4; jk� qjð ÞG<;Rðz3; z4; q;EÞ;

F z3; z4;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

s þ p2

q� �
¼
ð

dznD zð Þ
e�

ffiffiffiffiffiffiffiffiffi
q2

sþp2
p

jz3�zjþjz4�zjð Þ

q2
s þ p2

:

(189)

Unfortunately, this result requires a three-dimensional integral

for each value of z3; z4; k;Eð Þ. It turns out that a numerical

implementation of such a self-energy is very time consuming

and an approximation of the self-energy is necessary.

a. Averaged remote scattering. The scattering self-

energy of the last paragraph is only in so far “exact,” that the

correlation function of impurities is not further approxi-

mated. However, the assumption of a constant inverse

screening length qs is already a significant approximation

and in reality, screening in inhomogeneous devices is neither

homogeneous, nor constant with respect to momentum and

frequency. Instead, it would be a more realistic ansatz to

describe the screening of charges with a polarization that

depends on both propagation coordinates and is capable to

describe the many particle effects correctly (see, e.g., Ref.

211). However, such a dielectric function is numerically too

demanding.

Given this fact, it appears questionable to put great

efforts in an “exact” numerical implementation of Eq. (189).

Instead, the position dependent number of charged impurities

nD in Eq. (189) can be approximated with its average

hnDix3;x4
along the shortest propagation path between both

propagation coordinates x3 and x4. In this way, the influence

of scattering at inhomogeneously distributed charged

impurities is approximated with an effective scattering at

homogeneously distributed impurities. This approximation

effectively affects the function F of Eq. (189)

F z3; z4;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

s þ p2

q� �
	 nD z3; z4ð Þ

ð
dz

e�
ffiffiffiffiffiffiffiffiffi
q2

sþp2
p

jz3�zjþjz4�zjð Þ

q2
s þ p2

;

hnDiz3;z4
¼

nD z3ð Þ; for z3 ¼ z4

1

z4 � z3

ðz4

z3

dfnD fð Þ; elsewhere:

8><
>:

(190)

With this approximation, the scattering self-energy simplifies

to
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R<;R z3; z4; k;Eð Þ ¼
hnDiz3;z4

e4

4�2 2pð Þ2



ð

d2q
jz3 � z4j þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

s þ q2
p

q2
s þ q2

e�
ffiffiffiffiffiffiffiffiffi
q2

sþq2
p

jz3�z4jG<;R z3; z4; jk� qj;Eð Þ
" #

: (191)

To assess the validity of Eq. (190), we compare the

exact solution of F of Eq. (189) with the approximate F of

Eq. (190) in the case of a step like impurity density

nD zð Þ / 1; 8jzj � 7 nm

0; else:

�
(192)

Figure 26 shows the approximated [Eq. (190)] as well as

the exact integral [Eq. (189)], integrated over z3 and z4 for

various values of q. The smaller the transferred momentum

in devices with large screening lengths is, the more impor-

tant is the actual shape of the impurity density nD zð Þ and

the more is the function F affected by the approximation

in Eq. (190). Figure 26 shows that the approximation of

Eq. (190) effectively overestimates scattering only for

rather small transferred in-plane momenta. If the screening

length is shorter than 20 nm (which corresponds to

qs > 0:05 nm�1), the discrepancy of the effective scattering

strength is negligible.

Figure 27 shows F in the case of the impurity density in

Eq. (192) with z4 centered in the compact support of nD zð Þ.
The direct path between z3 and z4 may cross an area with

nonzero nD zð Þ. Then, the approximation of F (dashed) over-

estimates the exact solution (solid) for values of z3 close to

and within the compact support of nD zð Þ. However, when the

direct path between z3 and z4 does not touch the compact

support of nD, i.e.,

z3; z4 > 7 nm � z3; z4 < �7 nm; (193)

the approximation of Eq. (190) underestimates the scattering

(see Fig. 28). Consequently, the approximation in Eq. (190)

partly neglects remote scattering at charged impurities.

Nevertheless, nonlocality of quantum mechanics as well as

the self-consistent Born approximation ensure that a propa-

gation between points z3 and z4 that fulfill Eq. (193) is still

affected by scattering at the charged impurities. Figure 29

illustrates that Eq. (191) reproduces the on-shell scattering

rate of Fermi’s golden rule in a homogeneous GaAs system.

4. Scattering from rough interfaces

The scattering potential has been discussed already in

Sec. VI D 2. Since a detailed knowledge of the x; yð Þ-depend-

ence of the realistic interface is futile, the interface rough-

ness potential VIR xð Þ has to be averaged in the x; yð Þ-
direction. When the mid-point between the two materials is

assumed to be randomly distributed within a roughness inter-

val 2D the two possible values of VIR x; y; zð Þ, i.e., 6Vo=2

(where Vo is the conduction band offset) are equally likely

and the x; yð Þ-average of the roughness potential hVIR zð Þi x;yð Þ
vanishes exactly. Consequently, the lowest order scattering

at rough interfaces is of second order in Vo. Its derivation is

analog to the scattering at charged impurities (8z3; z4 within

the roughness interval)

R<;R z3; z4;r3;r4;Eð Þ ¼ G<;R z3; z4; r3; r4;Eð Þ

 hVIR z3; r3ð ÞVIR z4;r4ð Þi x;yð Þ: (194)

In general, the product of the perturbing potentials averaged

with respect to the actual interface configuration

hVIR z3; r3ð ÞVIR z4; r4ð Þi x;yð Þ depends on the growth coordi-

nates z3 and z4. However, modern molecular beam epitaxy

techniques allow for (depending on the growth direction)

FIG. 26. The function F of Eqs. (189) and (190) integrated over both propa-

gation coordinates. The approximation (dashed) of F deviates from the exact

one (solid) only for small q.

FIG. 27. The function F z3; z4 ¼ 0; qð Þ of Eqs. (189) and (190) at

q¼ 0.16 nm�1. The impurity density nD zð Þ is given in Eq. (192) and is non-

zero only in the gray shaded region. Note that the propagation coordinate z4

is centered in the compact support of nD zð Þ.
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almost monoatomic or monomolecular resolved growth of

layers, so that the typical roughness interval extends only

over a few Angstrom (see Sec. VI D 2). If this is much

smaller than the typical numerical resolution in envelope

function approximations (such as the effective mass repre-

sentations), D is usually represented by a single discretiza-

tion interval (8z3; z4 within the roughness interval)

hVIR x3; y3; z3ð ÞVIR x4; y4; z4ð Þi x;yð Þ

¼ hVIR x3; y3;Cð ÞVIR x4; y4;Cð Þi x;yð Þ: (195)

If D is smaller than the numerical grid spacing s, the self-

energies are finite only when its both propagation coordi-

nates lie on the ideal midpoint C. Deviations of the step

height from the grid spacing can be linearly interpolated

R<;R C;C;r3;r4;Eð Þ¼2D
s

G<;R C;C;r3;r4;Eð Þ


hVIR r3;Cð ÞVIR r4;Cð Þi x;yð Þ: (196)

If no discretization point lies directly on the steep interface

(as in most finite differences discretizations), the interface is

at the center between two adjacent grid points. Then, one

half of this self-energy can be distributed on each point adja-

cent to the interface. In this way, the Green’s function on the

interface is approximated with the Green’s function of the re-

spective adjacent grid point. It is worth noting that the pre-

factor of D2 in formulas of Sec. VI D 2 originates from

the transformation of z3 and z4 to delocalized basis states

(see, e.g., Ref. 206).

a. Gaussian roughness correlation. As pointed out in

Sec. VI D 2, it is a common approximation to assume a

Gaussian-shaped in-plane interface roughness autocorrelation

hVIR r3;Cð ÞVIR r4;Cð Þi x;yð Þ (see, e.g., Refs. 166, 179, and 221)

hVIR r3;Cð ÞVIR r4;Cð Þi x;yð Þ ¼
V2

o

4
exp � jr3 � r4j2

K2

 !
; (197)

with the correlation length K of the roughness in x; yð Þ-direc-

tion. When this function is inserted into Eq. (196), Fourier

transformed into the in-plane momentum space and inte-

grated over the in-plane scattering angle, the scattering self-

energy reads165

R<;R C;C; k;Eð Þ ¼ K2

4p
V2

o

4
exp �k2K2=4
� �



ð

d2qI0

kqK2

2

� �


 exp �q2K2=4
� �

G<;R C;C; q;Eð Þ;
(198)

with the modified Bessel function

I0 xð Þ ¼ 1

p

ðp

0

d/ exp x cos /ð Þ: (199)

b. Exponential shaped roughness correlation. Studies of

different material systems have shown,221,222 that an expo-

nential shape of the roughness autocorrelation may better

reproduce experimental data. Then, the autocorrelation of

the scattering potential reads

hVIR r3;Cð ÞVIR r4;Cð Þi x;yð Þ ¼
V2

o

4
exp � jr3 � r4j

k

� �
; (200)

where k is the exponential correlation length. When the

Fourier transform of this function is inserted in Eq. (196) and

the angle integral of the convolution is performed, the self-

energy reads

R<;R C;C; k;Eð Þ ¼ k2

p
V2

o

2

ð1
0

dqE 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2kq

1þ k2 k þ qð Þ2

s0
@

1
A


 qG<;R C;C; q;Eð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2 k þ qð Þ2

q
1þ k2 k � qð Þ2
h i :

(201)

FIG. 28. Same as in Fig. 27, but with z4¼�10 nm, i.e., outside of the com-

pact support of nD zð Þ (grey shaded region).

FIG. 29. On-shell scattering rate of electrons by charged impurities at 300 K

in homogeneous n-doped GaAs. The doping concentration is 2
 1018 cm�3.

The screening length was set constant to 5 nm for comparison (instead of the

realistic 3 nm). The dotted line (Fermi golden rule) and the full line (NEGF

calculation) agree nicely.
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Here, E xð Þ denotes the complete elliptical integral of the sec-

ond kind,

E xð Þ ¼
ðx

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2t2
p

1� t2
dt: (202)

5. Scattering from alloy disorder

As discussed in Sec. VI D 3, the perturbing potential of

electrons scattering on alloy disorder is given by the differ-

ence of the real conduction band offset of the material at

position z to the idealized one [see Eq. (113)]. The derivation

of the self-energies for the scattering on alloy disorder is

very analog to the scattering on charged impurities: In a ran-

dom alloy, the first order contribution of dV vanishes and the

second order in dV gives the first nonvanishing scattering

self-energy. Band edge fluctuations,

hdV x3; y3; z3ð ÞdV x4; y4; z4ð Þi x;yð Þ

¼ dV2hdx x3; y3; z3ð Þdx x4; y4; z4ð Þi x;yð Þ; (203)

are caused by concentration fluctuations dx. With the

assumption of local randomness within the volume X0 [see

also Eq. (114)]

hdx xð Þdx x0ð Þi ¼ X0x 1� xð Þd x� x0ð Þ; (204)

the alloy scattering self-energy reads

R<;R z3; z4; k;Eð Þ ¼ X0x 1� xð ÞdV2d z3 � z4ð Þ



ð

d2qG<;R z3; z4; q;Eð Þ: (205)

6. Inelastic electron-electron scattering

In most of the NEGF implementations, the electron-

electron interaction is only included in the Hartree approxi-

mation. This mean field approach requires solving the

Poisson equation self-consistently with the electron distribu-

tion within the active device. The inclusion of inelastic scat-

tering, however, requires solving the NEGF equations

beyond the Hartree-Fock approximation, as the Fock term

gives only elastic scattering contributions. Higher order cor-

relation terms increase the numerical effort dramatically:

Correlation terms are proportional to convolutions of at least

three single electron Green’s functions. Approximations of

these convolution integrals typically combine most of the

electron Green’s functions into the interaction term W and

assume a product ansatz for the self-energy, i.e., GW approx-

imations.223 Both terms of this approximation are subject to

further approximations. Assessments of typical approxima-

tions have shown that lower order approximations may even

yield more realistic results than inclusions of higher order

terms.224,225 Examples for NEGF implementations of inelas-

tic electron-electron scattering on cascade devices so far

only include the plasmon pole approximation for W and a

low-order GW0 approximation.118,119 The challenge of a

numerically efficient implementation of electron-electron

scattering in NEGF is not conclusively solved in literature.

The assessment of possible approximations of

electron-electron scattering in NEGF is beyond the scope of

this article. We refer the reader to the literature for more

thorough discussions.118,119,205

7. General remarks on scattering self-energies

It is worth making a few remarks on the implementation

of scattering in NEGF in general. When NEGF is solved

self-consistently with the Poisson equation, convergence

essentially requires meshes in energy and momentum that

resolve resonant states and van Hove singularities well. Most

often that is only possible with inhomogeneous and adaptive

meshes in energy and momentum.165,219,226 All scattering

self-energies of Secs. VIII D 1–VIII D 5 are given in their an-

alytical form. When they are discretized in energy and mo-

mentum, they represent effective scattering between energy

and momentum intervals of different sizes. For numerical

current conservation, the discretization of the energy and

momentum integrals in the scattering self-energies has to

carefully account for these different sizes.219 In most NEGF

implementations, current conservation is ensured by solving

the scattering self-energies in the self-consistent Born

approximation. Alternative approaches that solve the self-

energies in current conserving non-self-consistent approxi-

mations are the B€uttiker probe approach227 and the lowest

order approximation of Ref. 228. These approaches are ei-

ther limited to close-to equilibrium situations or to weak

scattering only.219,228 In other words, the Green’s functions

that appear in the scattering self-energies of the previous

paragraphs are the full scattered Green’s functions. Solving

the Green’s functions and self-energies in the full self-

consistent Born approximation requires iterative solutions of

the involved NEGF equations. Since this is numerically chal-

lenging, it is tempting to either truncate the iterations before

convergence or to apply lower order approximations. While

some of the low order approximations may still conserve the

current, they can easily face artifacts. For instance, the

neglect of G< contributions to the inelastic RR self-energy

has been shown to violate the Pauli blocking.118,165

The full energy and momentum integrals of self-

energies such as the polar optical phonon scattering represent

another high numerical burden. This has motivated several

authors to simplify these integrals with representative trans-

ferred momenta. While this approximation eases the numeri-

cal load a lot, it has to be treated with great care, since the

integrand functions vary significantly with the transferred

momentum.120,121

Nonlocal scattering mechanisms such as the charged im-

purity scattering cause a much higher numerical load than

local scattering mechanisms: Nonlocal scattering increases

the number of nonvanishing elements in the inverse of the re-

tarded Green’s function in Eqs. (150) and thereby increases

the number of floating point operations to solve GR. Even the

solutions of the scattering self-energies obviously require

more operations and more memory, too. When nonlocal scat-

tering is approximated with local scattering, at least an
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appropriate compensation factor has to be introduced to

avoid underestimation of the scattering rate.120,229,230

E. Selected results of NEGF on terahertz QCLs

In the following, some NEGF results for terahertz QCLs

are presented that illustrate typical and important features of

NEGF. All results represent the electron propagation in the

QCLs in terms of stationary vertical transport in laterally homo-

geneous quantum well heterostructures. The QCLs are consid-

ered to be in contact with two charge reservoirs at z¼R and

z¼L, respectively. Thereby, the charge transport is treated as a

scattering problem from source to drain, with the open device

forming the scattering center. Cascade periods that surround

the active device are included within the contact self-energies

that supply electrons in equilibrium Fermi distributions.

Incoherent scattering of electrons on optical and acoustic pho-

nons, charged impurities, and rough interfaces is included. The

electron-electron interaction in the Hartree approximation is

taken into account. Material parameters are taken from Ref.

231. All results shown in this section are for terahertz QCLs

consisting of periodically repeated GaAs and Al.15Ga.85As

layers. Each period consists of layers of the widths

30ð Þ 92 55ð Þ 80 27ð Þ 66 41ð Þ 155 Å, where the values in

parentheses indicate the Al.15Ga.85As barriers.232 Only the wid-

est well is doped with a sheet doping density of

1.9
 1010 cm�2. Only a single period is explicitly calculated,

whereas the remaining periods are covered within the lead

model.

1. QCL work principle—Energy resolved spectral
function

One important difference between NEGF and the den-

sity matrix method is that the resulting Green’s function and

self-energies are energy resolved. This additional informa-

tion increases the numerical load, but it can unveil important

insight into the device physics. One of the energy resolved

quantities is the spectral function of Eq. (163) as it can illus-

trate the mechanisms that are responsible for gain in the

presently studied QCL structures.

Figure 30 depicts a contour plot of the energy and spa-

tially resolved spectral function of the terahertz QCL for

vanishing lateral momentum k¼ 0 at a bias voltage of

33 mV per period which is below but close to the lasing

threshold (of about 50 mV per period). The maxima of the

spectral function represent resonant states. All states show

a finite width and a fine structure that results from the

coherent and incoherent coupling of all well states with one

another. In other words, the width of the broadened levels

corresponds to the total lifetime of the electrons in the re-

spective device state. The upper laser level (labeled by #4)

which is predominantly an antibonding state is aligned with

the confined state #5 in the leftmost source-sided quantum

well and therefore gets filled by resonant tunneling. The

lower laser level #3 gets efficiently emptied by two mecha-

nisms. First, the bonding state #3 is aligned with the states

#2 and #20 of the rightmost well which allows its coherent

depletion by tunneling. Second, the energy difference

between this state and the lowest resonance state (#1)

matches approximately the energy of an LO phonon

(36 meV) which leads to an additional depletion by the res-

onant emission of LO phonons. At the shown voltage the

alignment is visible, but not fully established. The detuning

of the alignment leads to a strong coherent leakage which

is in more detail discussed below.

2. Effect of incoherent scattering

Transport calculations of mid-infrared QCLs suggest

that the contribution of coherent propagation to the charge

transport in QCLs is insignificant compared to the efficient

incoherent scattering.114 Furthermore, Monte Carlo solutions

of the semiclassical Boltzmann equation, which neglect

(coherent) correlation effects between laser states, have suc-

cessfully predicted charge transport in terahertz QCLs near

threshold.107 Nevertheless, it can be shown that a general an-

swer to the question whether the transport in terahertz QCLs

is mainly coherent or incoherent cannot be given, since the

balance between both is sensitive to details of the device

structure. It actually turns out that the four well resonant

phonon terahertz QCLs of Fig. 30 is a very instructive exam-

ple for the interplay of coherent and incoherent transport.

A rather large portion of the current in the resonant pho-

non terahertz QCLs of Ref. 232 stems from coherent trans-

port. This can be deduced from Fig. 31, comparing

experimental and various theoretical results for the current

density of this terahertz QCL.

The solid curve shows the calculation where phonon,

impurity, interface roughness, and electron-electron scatter-

ing in the Hartree approximation have been fully included.

The dash-dotted curve in Fig. 31 shows the limiting case

where all scattering self-energies have been artificially

turned off. Obviously, incoherent scattering enhances the

current density in this QCL. In contrast, incoherent scattering

FIG. 30. Contour plot of the spectral function A z;Eð Þ of the QCL, in units of

108 eV�1 cm�1, as a function of position z in nm and energy E in meV. The

zero in energy marks the chemical potential of the source. The applied bias

voltage is 33 mV per period. The solid line indicates the self-consistent

potential profile. The spectral function is only shown within the energy inter-

val from �50 to 70 meV. The labels number the relevant resonances that are

discussed in the main text.
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reduces the current density when no confining barriers are

present (such as in transistor devices). In fact, it has been

shown that incoherent scattering decreases the current in low

resistive devices, whereas the current in high resistive devi-

ces is increased by incoherent scattering.227

3. Coherent regime

The two maxima of the ballistic current in Fig. 31 near

33 and 48 mV correspond to aligned laser states. At these

voltages, electronic states are generated that extend across

the entire QCL period. Such a delocalized state can be found

in Fig. 30. At a bias voltage of 33 mV per period, the lowest

state in the injector well (labeled with #5) is aligned with the

second state ð#20Þ of the rightmost quantum well, i.e., the

collector well. This alignment generates a finite spectral

function in the gap between the upper (#4) and the lower

(#3) laser level. In this way, the spectral function at the

energy E¼ 12 meV remains finite in every quantum well of

the active period. Thus, electrons of this energy can coher-

ently tunnel throughout the QCL period and maintain a max-

imum in the ballistic I-V characteristic.

Resonances in the current density caused by states that

extend across the total QCL period are already known in lit-

erature. In the area of Monte Carlo simulations of QCLs,

anticrossing of laser states also lead to such highly delocal-

ized states which eases the coherent multibarrier tunneling.

In the Monte Carlo formalism, however, the laser states are

determined with a Hermitian Schr€odinger equation which

yields infinite state lifetimes. Thus, when the alignment con-

ditions of the above delocalized states are met, the corre-

sponding resonance in the I–V characteristics predicted in

the Monte Carlo formalism is very large. It has been shown

in Ref. 125 that a finite lifetime of the laser states reduces

the height of the artificial current peaks significantly. The fi-

nite lifetime of the electrons in the ballistic calculations of

Fig. 31 originates from the finite probability for electrons to

leave the device and thereby to “decay” into lead states. In

fact, the Schr€odinger equation that corresponds to the solu-

tion of the Dyson equation [Eq. (150)] is non-Hermitian,

irrespective whether incoherent scattering is implemented or

not. Thus, artificial spikes of the I–V characteristics cannot

be seen in NEGF for open devices.

4. Incoherent regime

When the applied voltage of the QCL in Fig. 30 exceeds

33 mV the completely delocalized state breaks apart and the

ballistic I–V characteristic shows a negative differential re-

sistivity. Such a situation is depicted by the contour lines of

Fig. 32 as they show the spectral function of the same QCL

as in Fig. 30, but at an applied bias voltage of 52 mV per pe-

riod. Here, the most prominent maxima of the spectral func-

tion separate into two groups of partly delocalized states:

One group consists of the aligned injector (#5 in Fig. 30) and

upper laser level (#4) and allows for the coherent propaga-

tion from the source sided device boundary to the center of

each QCL period. The second group of delocalized states is

generated by the alignment of the lower laser level (#3) and

the second state of the collector well (#2) and eases the elec-

tronic propagation from the center of each QCL period to its

drain sided limit. Since the states of both groups are energeti-

cally separated, electronic transitions between them require

dissipation of energy. Thus, at this bias voltage, the coherent

propagation throughout the total QCL period is suppressed,

and the ballistic current is significantly smaller than the cor-

responding result for incoherent scattering included (see Fig.

31).

5. Incommensurate transport periodicity—Energy
resolved current density

Typically, electrons in quantum cascade devices are

expected to follow the periodicity of the structure. In theory,

this is not necessarily the case, as can be seen from the con-

tour plot of the spectral function at vanishing in-plane

FIG. 31. Experimental (triangles) and theoretically predicted (solid lines)

I–V characteristics of the QCL of Fig. 30. Ballistic calculations (dashed-dot-

ted), i.e., NEGF calculations ignoring any incoherent scattering mechanism,

underestimate the current density. At the two ballistic resonances, however,

a large portion of the realistic current is coherent.

FIG. 32. Calculated conduction band profile (thick line), contour lines of the

energy and spatially resolved spectral function A(z, E) at vanishing in-plane

momentum in two adjacent periods of the QCL at a bias voltage of 52 mV

per period in the relevant energy range between �121 meV and 78 meV.

The contour plot shows the spatially and energy resolved current density

J(z, E) in the same energy range. The zero in energy marks the chemical

potential of the source. The dotted line marks the boundary between first and

second period.
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momentum shown in Fig. 32 for two adjacent QCL periods.

The states associated with the first and second QCL period

are labeled by numbers and primed numbers, respectively. In

both periods, the alignment of the states follows the scheme

described in detail for Fig. 30. In so far, the spectral function

is periodic. In particular, the energy difference between the

lower laser levels (3 and 30) and the lowest collector states (1

and 10) matches the energy of an LO phonon in both periods.

Nevertheless, the carrier distribution deviates from the geo-

metric QCL periodicity. This can be seen by a contour graph

of the local energy resolved current density J z;Eð Þ [as

defined in Eq. (152)] in Fig. 32. The function J z;Eð Þ shows

spatially constant (i.e., horizontal) stripes in regions where

the electrons propagate without dissipating energy.

Disruptions of these horizontal stripes mark positions where

LO-phonons get emitted. The figure shows that the number

of emitted LO phonons is not equal for adjacent QCL peri-

ods. When the electrons have passed the first period and trav-

ersed a potential drop of 52 meV, they have emitted only one

LO-phonon of energy 36 meV. The included elastic and

inelastic scattering mechanisms are not able to dissipate the

remaining 16 meV within this QCL period. This is a conse-

quence of the good state alignment that supports efficient

coherent multi-barrier tunneling. Consequently, the electrons

enter the second period with an in-plane kinetic energy of

16 meV. As can be seen in Fig. 32, the energy of the leftmost

current stripe coincides with states 5 and 4, whereas the

following current stripe lies above the corresponding states

50 and 40. Thus, these propagating electrons are now able to

emit an LO-phonon, ending up in and occupying the lower

laser level 30. This occupancy leads to the build-up of the

current stripe near z¼ 80 nm in Fig. 32 that is absent in the

first period. The electrons can now tunnel resonantly from

states 30 into 20 and scatter into the lowest collector state 10

by the emission of an additional LO-phonon. Thus, the elec-

trons have emitted a total of 3 LO phonons

(3
 36 meV¼ 108 meV) across 2 QCL periods (voltage

drop of 2
 52 meV¼ 104 meV) and are finally fully ther-

malized. The remaining small energy discrepancy can be

gained from absorbing or emitting acoustic phonons. This

process is repeated in the subsequent QCL periods such that

a commensurable charge distribution with period two is

established. Since the detailed energy balance depends on

the applied bias voltage, the carrier density and current dis-

tribution may even become incommensurable with the geo-

metric periods. A consequence of this incomplete carrier

thermalization is a significant reduction in the occupation

inversion and the optical gain in every other period. The cal-

culated gain shows a drop of approximately 65% in the sec-

ond period in Fig. 32. It has been estimated that electron-

electron scattering cannot relax the electrons and restore the

periodicity of the carrier distribution to a single QCL pe-

riod.118 This is mainly due to the efficient coherent tunneling

of the electrons which supports resonant LO phonon emis-

sion instead.156 Recent experimental findings indicate the

heating of the electron gas described here.233

6. Temperature degradation—Energy resolved density

With increasing temperature, the number of electrons

with high in-plane kinetic energies becomes significant. This

can be seen in Fig. 33(a) that shows the energy resolved elec-

tron density n z;Eð Þ in the injector well (labeled with I), the

two active quantum wells (II and III) and the collector well

(IV) of the four well terahertz QCL of Fig. 30 at a tempera-

ture of 200 K. The subbands are depicted in Fig. 33(b) which

shows the spatially integrated spectral function at vanishing

in-plane momentum. The dashed lines mark the subband

energies of the lowest state in the QCL period

(E¼ 17.4 meV) as well as the lower (E¼ 55.5 meV and

E¼ 60.9 meV) and the upper laser levels (E¼ 71.1 meV and

E¼ 73.4 meV). Electrons with more than 20 meV of kinetic

energy above the subband minima can be found in the upper

laser level. This kinetic energy suffices for electrons in the

upper laser level to scatter into the lower laser level by emit-

ting an optical phonon (thermally activated phonon emis-

sion). In addition, some electrons in the collector well (IV)

can reach sufficiently high kinetic energies to fill the lower

laser level. These mechanisms reduce the occupation inver-

sion and the optical gain.

For comparison, the energy resolved density and the

spectral function of this QCL at 40 K lattice temperature are

shown in Figs. 34(a) and 34(b), respectively. It is easy to see

that both mechanisms, the thermally activated phonon emis-

sion and the thermal backfilling, are absent at this lower

temperature.234

FIG. 33. (a) Energy resolved density at a bias of 50 mV per period at a lat-

tice temperature of 200 K for various spatial positions in the QCL of Fig. 30.

The Roman numbers denote the injector (I), the two active (II and III), and

the collector well (IV). (b) Spatially integrated spectral function at 200 K;

the peaks mark the energy of resonant states.
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IX. CONCLUSION AND OUTLOOK

The advancement of QCL simulation approaches is

driven by an intrinsic motivation to further improve the

description and numerical implementation of the underlying

physical processes, and by experimental progress requiring

improved and extended simulations. A current research topic

is the consideration of the relevant quantum effects at an ac-

ceptable numerical efficiency. Furthermore, the self-

consistent inclusion of the laser field in the simulation is of

great interest, especially in the context of frequency conver-

sion structures for the terahertz and near infrared regime.

Besides, alternative material systems extending the spectral

range covered by QCLs or enabling high temperature tera-

hertz operation might necessitate a theoretical treatment

beyond the conduction band C valley.

A. Development of hybrid quantum-semiclassical and
approximate quantum simulation approaches

Quantum coherence effects can play a pronounced role

especially in terahertz QCLs where the energetic spacing

between the quantized levels is relatively small.115,125 On the

other hand, quantum transport approaches such as the density

matrix formalism or NEGF are numerically much more

demanding than their semiclassical counterparts. Especially

for full 3D simulations, this impedes their application to QCL

design and optimization. Thus, there have been various

efforts to implement certain aspects of the quantum transport

theory into the semiclassical description to increase its accu-

racy and range of validity, but preserving its relative

numerical efficiency. Examples include phenomenologically

extending the standard rate-equation models to include coher-

ence,235 incorporating energetic broadening of the quantized

states into EMC simulations,236,237 and combining the semi-

classical Monte Carlo method with a density matrix

approach.125,238 Hybrid density matrix-Monte Carlo methods

exploit the fact that resonant tunneling dominates the trans-

port only in some regions, e.g., through a thick barrier such as

an injection barrier, while a semiclassical transport descrip-

tion is adequate in the rest of the QCL structure.125 A special

challenge in hybrid quantum-semiclassical simulations will

be a self-consistent description of dephasing going beyond

phenomenological dephasing time models.125 Furthermore,

free carrier absorption239,240 and electron leakage into the

continuum of states241,242 can have an effect and thus should

be adequately implemented into the simulations.

B. Modeling of innovative QCL designs based on
alternative material systems

Innovative QCL designs based on alternative material

systems hold the potential of extending the spectral range

covered by QCLs or enabling high temperature terahertz

operation. The exploration of alternative QCL designs and

subsequent systematic optimization is greatly facilitated by

careful modeling. Up to now, lasing has only been obtained

for n-type QCLs, using InGaAs/InAlAs on InP substrate or

GaAs/AlGaAs on GaAs,2,3 and to a smaller extent antimo-

nides such as InAs/AlSb.4,5 Since all these materials (apart

from AlSb) have direct bandgaps, QCL simulations have up

to now focused on the conduction band C valley. Thus, for

alternative material systems with an indirect bandgap or

using valence band transitions, the simulation methods will

have to be correspondingly extended and adapted.

Furthermore, additional effects such as strong polarization

fields might have to be included.

One example for an alternative material system which

could extend the application range of QCLs is GaN/AlGaN.

Due to the large conduction band discontinuity, nitride-based

QCL structures are promising candidates for short wave-

length applications.243,244 Furthermore, the GaN/AlGaN ma-

terial system is also interesting for the development of high

temperature terahertz QCLs because of the large optical pho-

non energies ðELO 	 90 meVÞ.243,245–247 However, no work-

ing nitride-based QCL has been demonstrated to date, only

absorption and electroluminescence has been

observed.243,244 First NEGF results on a GaN-based QCL

indicated a too large level broadening to maintain lasing.248

The feasibility of terahertz GaN/AlGaN QCLs has also been

studied using self-consistent rate equation models245,247 and

Monte Carlo simulations.246 For simulating such structures,

the band bending effects due to the strong intrinsic polariza-

tion fields have to be considered. These are clearly visible in

Fig. 35, showing the conduction band profile and probability

densities for an experimental GaN/AlGaN structure.243

An alternative to the conventional n-type QCLs are

designs employing hole-based intersubband transitions in the

valence band. Si/SiGe-based p-type structures are interesting

since this material system offers a high integration potential

FIG. 34. (a) Energy resolved density and (b) spatially integrated spectral

function for the same QCL as in Fig. 33, but at a lattice temperature of 40 K.
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and low process costs. For terahertz applications, a major

advantage versus GaAs-based terahertz emitters is that

potentially higher operating temperatures can be obtained

due to the absence of LO phonon scattering in type IV semi-

conductors.249 A working Si/SiGe QCL has not yet been

demonstrated; however, electroluminescence could be

achieved in the mid-infrared regime due to transitions

between quantized heavy hole states,250 and in the terahertz

regime due to light hole-heavy hole transitions.249 The simu-

lation of hole-based devices is far more elaborate than for

comparable n-type structures, since mixing effects of the

heavy hole, light hole and split-off band have to be consid-

ered in the carrier transport simulations and the Schr€odinger

solver. Thus, a more complex description than the effective

mass approximation typically used for n-type devices has to

be employed, such as k�p theory.251,252 Due to the absence

of working p-type QCLs, only few theoretical studies based

on rate equations251,253 and the Monte Carlo method252 have

been published. If p-type QCLs based on Si/SiGe or another

material system become technically feasible, the adaption

and efficient numerical implementation of the different simu-

lation approaches discussed in this review paper for the va-

lence band will become a demanding task.

Alternatively, n-type terahertz QCLs based on Ge/SiGe

have been considered.254 Here, the lasing transition takes

place in the conduction band L valleys, which are in contrast

to the C valley both anisotropic and degenerate. Rate equa-

tion simulations have been performed to investigate the fea-

sibility of such designs.255 Intersubband absorption has been

experimentally observed in the conduction band of Ge/SiGe

quantum well structures,256 but up to now no operating QCL

has been demonstrated.

C. Inclusion of the optical cavity field

Simulations of the coupled electron and optical dynam-

ics have mainly been performed using one-dimensional

approaches such as rate77,126 and Maxwell-Bloch96–98

equations or the density matrix method.113 On the other

hand, with very few exceptions76,123,238 advanced three-

dimensional carrier transport simulations have focused on

the electron dynamics, completely ignoring the light field.

However, the inclusion of the lasing field is not only required

to study the actual lasing operation but also to model tera-

hertz and infrared frequency conversion QCL sources. Here,

the nonlinear optical properties of the QCL heterostructure

must be adequately implemented, and the modeling of the

optical cavity field is crucial to evaluate the nonlinear fre-

quency conversion process. An example is terahertz differ-

ence frequency generation in QCL structures, enabling room

temperature terahertz generation20,22,23 with broadband fre-

quency tunability.23,24 A major goal is here to push the avail-

able room temperature output power from currently 120 lW

(Ref. 23) to a few mW, as required for most technical appli-

cations. Recently, such a QCL device has been modeled

using an EMC approach.25 Artificial optical nonlinearities

are also attractive for extending QCL operation towards

shorter wavelengths, e.g., by using frequency doubling.27

The self-consistent inclusion of the optical cavity field

requires adequate electromagnetic modeling of the resonator

to determine the mode solutions and the corresponding over-

lap factor C and losses aw, am. Increasingly, special resona-

tor designs based on plasmonic effects or exhibiting

subwavelength structuring are used for beam shaping or to

enhance the efficiency and spectral purity. For example, the

recent performance improvement of terahertz difference fre-

quency sources has largely benefited from special cavity

designs employing distributed feedback structures31 or the

Cherenkov effect.23,28 In addition to general electromagnetic

modeling approaches such as the finite element method, the

development of adapted methods for specific cavity types,

which are numerically efficient and provide more intuitive

insight, is helpful for device simulation and optimization.
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215N. Vukmirović, Z. Ikonić, D. Indjin, and P. Harrison, Phys. Rev. B 76,

245313 (2007).
216E. M. Lifschitz and L. P. Pitajewski, Physical Kinetics, Course of

Theoretical Physics, Vol. 10 (Elsevier, Oxford, 2008).
217C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).
218B. K. Ridley, Quantum Processes in Semiconductors (Oxford Science

Publications, Oxford, 1982).
219T. Kubis, “Quantum transport in semiconductor nanostructures,” Ph.D. thesis

(Technische Universit€at M€unchen, 2009); available at http://nanohub.org/

resources/8612.
220A. Svizhenko and M. P. Anantram, Phys. Rev. B 72, 085430 (2005).

221S. Yamakawa, H. Ueno, K. Taniguchi, C. Hamaguchi, K. Miyatsuji, K.

Masaki, and U. Ravaioli, J. Appl. Phys. 79, 911 (1996).
222G. H. Kruithof, T. M. Klapwijk, and S. Bakker, Phys. Rev. B 43, 6642

(1991).
223L. Hedin, Phys. Rev. 139, A796 (1965).
224U. von Barth and B. Holm, Phys. Rev. B 54, 8411 (1996).
225B. Holm and U. von Barth, Phys. Rev. B 57, 2108 (1998).
226S. Agarwal, M. Povolotskyi, T. Kubis, and G. Klimeck, J. Comput.

Electron. 9, 252 (2010).
227M. B€uttiker, Phys. Rev. B 33, 3020 (1986).
228H. Mera, M. Lannoo, C. Li, N. Cavassilas, and M. Bescond, Phys. Rev. B

86, 161404 (2012).
229G. Klimeck, R. Lake, C. L. Fernando, R. C. Bowen, D. Blanks, M. Leng,

T. Moise, Y. C. Kao, and W. R. Frensley, in Proceedings of the

International Conference on Quantum Devices and Circuits: Alexandria,

Egypt, 4–7 June 1996, edited by K. Ismail, S. Bandyopadhyay, and J. P.

Leburton (Alexandria, Egypt, 1996).
230M. Luisier and G. Klimeck, Phys. Rev. B 80, 155430 (2009).
231Landolt-B€ornstein, edited by O. Madelung, Semiconductors: Intrinsic

Properties of Group IV Elements and III–V, II–VI and I–VII Compounds
(Springer, Berlin, 1987).

232A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P.

Klang, W. Schrenk, and G. Strasser, Mater. Sci. Eng., B 147, 152 (2008).
233K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis,

and G. Klimeck, Opt. Express 20, 20647 (2012).
234H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa,

Appl. Phys. Lett. 94, 151109 (2009).
235A. Gordon and D. Majer, Phys. Rev. B 80, 195317 (2009).
236Z. Aksamija and U. Ravaioli, J. Appl. Phys. 105, 083722 (2009).
237A. Matyas, P. Lugli, and C. Jirauschek, Appl. Phys. Lett. 102, 011101

(2013).
238I. Bhattacharya, C. W. I. Chan, and Q. Hu, Appl. Phys. Lett. 100, 011108

(2012).
239J. S. Bhat, S. S. Kubakaddi, and B. G. Mulimani, J. Appl. Phys. 72, 4966

(1992).
240A. Wacker, G. Bastard, F. Carosella, R. Ferreira, and E. Dupont, Phys.

Rev. B 84, 205319 (2011).
241A. M�aty�as, T. Kubis, P. Lugli, and C. Jirauschek, Physica E 42, 2628

(2010).
242W. Freeman and G. Karunasiri, Phys. Rev. B 85, 195326 (2012).
243F. Sudradjat, W. Zhang, K. Driscoll, Y. Liao, A. Bhattacharyya, C.

Thomidis, L. Zhou, D. J. Smith, T. D. Moustakas, and R. Paiella, J. Appl.

Phys. 108, 103704 (2010).
244C. Gmachl, H. M. Ng, and A. Y. Cho, Appl. Phys. Lett. 77, 334 (2000).
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